Явление резонанса токов и напряжений наблюдается в цепях индуктивно-емкостного характера. Это явление нашло применение в радиоэлектронике, став основным способов настройки приемника на определенную волну.
К сожалению, резонанс может нанести вред электрооборудованию и кабельным линиям. В физике резонансом является совпадение частот нескольких систем.
Давайте рассмотрим, что такое резонанс напряжений и токов, какое значение он имеет и где используется в электротехнике.
Реактивные сопротивления индуктивности и емкости
Индуктивностью называется способность тела накапливать энергию в магнитном поле. Для нее характерно отставание тока от напряжения по фазе. Характерные индуктивные элементы — дросселя, катушки, трансформаторы, электродвигатели.
Емкостью называются элементы, которые накапливают энергию с помощью электрического поля. Для емкостных элементов характерно отставание по фазе напряжения от тока. Емкостные элементы: конденсаторы, варикапы.
- Приведены их основные свойства, нюансы в пределах этой статьи во внимание не берутся.
- Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине.
Емкость и индуктивность в цепи переменного тока
- Если в цепях постоянного тока емкость в общем смысле представляет собой разорванный участок цепи, а индуктивность — проводник, то в переменном конденсаторы и катушки представляют собой реактивный аналог резистора.
- Реактивное сопротивление катушки индуктивности определяется по формуле:
- Векторная диаграмма:
- Реактивное сопротивление конденсатора:
- Здесь w — угловая частота, f — частота в цепи синусоидального тока, L — индуктивность, C — емкость.
- Векторная диаграмма:
- Стоит отметить, что при расчете соединенных последовательно реактивных элементов используют формулу:
- Обратите внимание, что емкостная составляющая принимается со знаком минус. Если в цепи присутствует еще и активная составляющая (резистор), то складывают по формуле теоремы Пифагора (исходя из векторной диаграммы):
От чего зависит реактивное сопротивление? Реактивные характеристики зависят от величины емкости или индуктивности, а также от частоты переменного тока.
Если посмотреть на формулу реактивной составляющей, то можно заметить, что при определенных значениях емкостной или индуктивной составляющей их разность будет равна нулю, тогда в цепи останется только активное сопротивление. Но это не все особенности такой ситуации.
Резонанс напряжений
Если последовательно с генератором соединить конденсатор и катушку индуктивности, то, при условии равенства их реактивных сопротивлений, возникнет резонанс напряжений. При этом активная часть Z должно быть как можно меньшей.
Стоит отметить, что индуктивность и емкость обладает только реактивными качествами лишь в идеализированных примерах. В реальных же цепях и элементах всегда присутствует активное сопротивление проводников, хоть оно и крайне мало.
При резонансе происходит обмен энергией между дросселем и конденсатором. В идеальных примерах при первоначальном подключении источника энергии (генератора) энергия накапливается в конденсаторе (или дросселе) и после его отключения происходят незатухающие колебания за счет этого обмена.
- Напряжения на индуктивности и емкости примерно одинаковы, согласно закону Ома:
- U=I/X
- Где X — это Xc емкостное или XL индуктивное сопротивление соответственно.
- Цепь, состоящую из индуктивности и емкости, называют колебательным контуром. Его частота вычисляется по формуле:
- Период колебаний определяется по формуле Томпсона:
- Так как реактивное сопротивление зависит от частоты, то сопротивление индуктивности с ростом частоты увеличивается, а у ёмкости падает. Когда сопротивления равны, то общее сопротивление сильно снижается, что отражено на графике:
- Основными характеристиками контура являются добротность (Q) и частота. Если рассмотреть контур в качестве четырехполюсника, то его коэффициент передачи после несложных вычислений сводится к добротности:
- K=Q
- А напряжение на выводах цепи увеличивается пропорционально коэффициенту передачи (добротности) контура.
Источник: https://www.remontostroitel.ru/rezonans-tokov-i-napryazhenij-usloviya-vozniknoveniya-i-primenenie.html
Резонанс токов: в цепи переменного тока и напряжения
Многие люди, изучая электронику и все, что с ней связано, сталкиваются с таким понятием как резонанс токов. Что оно собой представляет, при каких условиях возникает резонанс токов, как используется и как его правильно подсчитать? Об этом далее.
Что это такое
Резонанс токов — разновидность состояния электрической цепи, когда общий вид токовых показателей совпадает по фазам уровню напряжения, а мощность реактивного вида равна нулю или же она представлена в активном виде.
. Резонанс токов
Этот вариант развития событий характерен для переменного тока и имеет не только положительные свойства, но и некоторые нежелательные последствия. Так, благодаря резонансу работает радиотехника, автоматика и проволочная телефония, но в то же время возникают перенапряжения и сбои в работе электрической системы.
Определение из учебного пособия
При каких условиях возникает
Условием того, чтобы возникло это явление, является равные показатели проводниковой частоты, где BL=BC. То есть емкостная с индуктивной проводимостью должна быть равна. Только тогда подобное явление резонанса токов наблюдается в электрической цепи.
Он при этом может быть как положительным, так и отрицательным. В любом радиоприемнике есть колебательный контур, который из-за индуктивного или емкостного изменения, настраивается на нужный сигнал радиоволны.
В другом случае, это ведет к тому, что появляются скачки напряжения или ток в цепи и появляется аварийная ситуация.
В условиях лаборатории, он возникает во время, когда изменяется емкость и не изменяется индуктивность катушки L. В таком случае формула выглядит как Bc=C
При каких условиях возникает
Как используется
Резонансные токи используются сегодня в некоторых фильтрующих системах, радиотехнике, электричестве, радиостанциях, асинхронных двигателях, высокоточных электрических сварных установках, колебательных генераторных электрических контурах и высокочастотных приборах. Нередко, когда они применяются, чтобы снизить генераторную нагрузку.
Обратите внимание! Простейшая цепь, где наблюдаются они, это параллельного вида колебательный контур. Такие контуры используются в современном промышленном индукционном котловом оборудовании и улучшают показатели КПД.
Сфера применения
Принцип действия
Токовый резонанс можно заметить во внутренней поверхности электрической цепи, которая имеет параллельное катушечное, резисторное и конденсаторное подсоединение. Главный принцип того, как работает стандартный аппарат, не сложен в понимании.
Когда включается электрическое питание, внутри конденсаторной установки накапливается заряд до номинального напряжения. В этом время отключается питающий источник и замыкается цепь в контур. Этот момент сопровождается переносом разряда на часть катушки.
Далее показатели тока, которые проходят по катушке, генерируют магнитное поле. Создается электродвижущая самостоятельная индукционная сила по направлению встречному току. При полном конденсаторном разряде максимально увеличиваются токовые показатели. Объем энергии становится магнитным индукционным полем.
В результате данный цикл повторяется, и катушечное поле преобразовывается в конденсаторный заряд.
Принцип работы
Как правильно рассчитать
Токовый резонанс очень важно правильно рассчитать, если есть параллельное соединение, предотвращающая появление помех около системы. Для правильного расчета необходимо понять, какие показатели мощности в электросети.
Средняя стандартная мощность, рассеивающаяся при резонансном контуре, выражается при помощи среднеквадратичных токовых показателей и напряжения.
При резонансе мощностный коэффициент равен единице и формула имеет вид, как на картинке.
Формула расчета
Чтобы правильно определить нулевой импеданс, понадобиться воспользоваться стандартной формулой, которая дана ниже.
Формула резонансных кривых
Что касается аппроксимирования резонанса колебательных частот, это можно выяснить по следующей формуле.
Расчет колебательного контура
Обратите внимание! Для получения максимально точных данных по приведенным формулам, округлять данные не нужно. Благодаря этому получится грамотный расчет, который приведет к достойной экономии переменного тока, если речь идет о подсчете в целях снижения счетов.
В целом, резонанс токов — это то, что происходит в части параллельного колебательного контура, в случае его подключения к источнику напряжения, частота какого может совпадать с контурной.
Возникает при условиях, когда цепь, имеющая параллельное соединение резисторной катушки и конденсатора, равна проводимости BL=BC.
Правильно сделать весь необходимый подсчет можно по специальной формуле или, прибегая к использованию специальных измерительных инструментов в виде мультиметра.
Источник: https://rusenergetics.ru/ustroistvo/rezonans-tokov
Резонанс напряжений и резонанс токов
В физике резонансом называется явление, при котором в колебательном контуре частота свободных колебаний совпадает с частотой вынужденных колебаний. В электричестве аналогом колебательного контура служит цепь, состоящая из сопротивления, ёмкости и индуктивности. В зависимости от того как они соединены различают резонанс напряжений и резонанс токов.
Резонанс напряжений
Резонанс напряжений возникает в последовательной RLC-цепи.
Условием возникновения резонанса является равенство частоты источника питания резонансной частоте w=wр, а следовательно и индуктивного и емкостного сопротивлений xL=xC. Так как они противоположны по знаку, то в результате реактивное сопротивление будет равно нулю.
Напряжения на катушке UL и на конденсаторе UC будет противоположны по фазе и компенсировать друг друга.
Полное сопротивление цепи при этом будет равно активному сопротивлению R, что в свою очередь вызывает увеличение тока в цепи, а следовательно и напряжение на элементах.
При резонансе напряжения UC и UL могут быть намного больше, чем напряжение источника, что опасно для цепи.
С увеличением частоты сопротивление катушки увеличивается, а конденсатора уменьшается. В момент времени, когда частота источника будет равна резонансной, они будут равны, а полное сопротивление цепи Z будет наименьшим. Следовательно, ток в цепи будет максимальным.
- Из условия равенства индуктивного и емкостного сопротивлений найдем резонансную частоту
- Исходя из записанного уравнения, можно сделать вывод, что резонанса в колебательном контуре можно добиться изменением частоты тока источника (частота вынужденных колебаний) или изменением параметров катушки L и конденсатора C.
- Следует знать, что в последовательной RLC-цепи, обмен энергией между катушкой и конденсатором осуществляется через источник питания.
Резонанс токов
Резонанс токов возникает в цепи с параллельно соединёнными катушкой резистором и конденсатором.
Условием возникновения резонанса токов является равенство частоты источника резонансной частоте w=wр, следовательно проводимости BL=BC. То есть при резонансе токов, ёмкостная и индуктивная проводимости равны.
Для наглядности графика, на время отвлечёмся от проводимости и перейдём к сопротивлению. При увеличении частоты полное сопротивление цепи растёт, а ток уменьшается. В момент, когда частота равна резонансной, сопротивление Z максимально, следовательно, ток в цепи принимает наименьшее значение и равен активной составляющей.
- Выразим резонансную частоту
- Как видно из выражения, резонансная частота определяется, как и в случае с резонансом напряжений.
Явление резонанса может носить как положительный, так и отрицательный характер. Например, любой радиоприемник имеет в своей основе колебательный контур, который с помощью изменения индуктивности или емкости настраивают на нужную радиоволну. С другой стороны, явление резонанса может привести к скачкам напряжения или тока в цепи, что в свою очередь приводит к аварии.
1 1 1 1 1 1 1 1 1 1 4.13 (149 Голоса)
Источник: https://electroandi.ru/toe/ac/rezonans-napryazhenij-i-rezonans-tokov.html
Резонанс токов – обзор понятия и методики расчета
Резонанс токов, хорошо известный как естественный токовый «параллельный резонанс» — процесс или явление, которое протекает в условиях параллельного типа колебательного контура и наличия напряжения.
В данном случае частота источника напряжения должна иметь совпадение с аналогичными резонансными показателями контура.
Что такое резонанс?
Токовым резонансом называется особый вид состояния цепи, когда общие токовые показатели совпадают по фазным параметрам с уровнем напряжения, а реактивная мощность равняется нулю и цепью потребляется исключительно активная мощность.
Данный вариант является характерным преимущественно для схем с переменными показателями токовых величин и обладает не только положительными свойствами, но и некоторыми совершенно нежелательными качествами, которые в обязательном порядке учитываются еще в процессе проектирования.
Положительное резонансное действие — явление из области радиотехники, автоматики и проволочной телефонии. Резонанс напряжений относится к категории нежелательных явлений, обусловленных перенапряжениями. При этом добротным электрическим контуром принято считать величину:
Достижение токового резонанса осуществляется подбором необходимого индуктивного или емкостного значения, а также показателей частотности питающих сетей.
Токовый резонанс получается подбором параметров электроцепи в условиях заданной частоты источника питания, а также посредством выбора обратных показателей.
Применение токового резонанса
Основная область активного применения широко востребованных резонансных токов сегодня представлена:
- некоторыми видами фильтрующих систем, в которых току с определенными частотными параметрами оказываются значительные показатели сопротивления;
- радиотехникой в виде приемников, выделяющих сигналы, предназначенные для конкретных точек радиостанций. Оказание значительного сопротивления току сопровождается снижением показателей контурного напряжения при максимальной частоте;
- асинхронного типа двигателями, в особенности функционирующими в условиях неполной нагрузки;
- установками высокоточной электрической сварки;
- колебательными контурами внутри узлов генераторов электронного типа;
- приборами, отличающимися высокочастотной закалкой;
- снижением показателей генераторной нагрузки. При таких условиях в приемном трансформаторе с первичной обмоткой делается колебательный контур.
Схема цепи
Особенно часто колебательные контуры или токовые резонансы применяются в производстве современного промышленного индукционного котлового оборудования, что позволяет в значительной степени улучшить стартовые показатели коэффициента полезного действия.
Стандартные колебательные контуры, функционирующие в условиях режима токового резонанса, массово применяются в качестве одного из наиболее важных узлов в современных электронных генераторах.
Принцип резонанса токов
Токовый резонанс наблюдается внутри электроцепи, обладающей параллельным катушечным, резисторным и конденсаторным подсоединением. Основной принцип работы стандартного резонанса токов не слишком сложен для понимания простого обывателя:
- включение электропитания сопровождается накоплением заряда внутри конденсатора до номинальных показателей напряжения источника;
- отключение питающего источника с последующим замыканием цепи в контур сопровождается процессом переноса разряда на катушечную часть прибора;
- токовые показатели, проходящие по катушке, вызывают генерирование магнитного поля и создание электродвижущей силы самоиндукции, в направлении, встречном току;
- максимальное значение токовых показателей достигается на стадии полного конденсаторного разряда;
- весь объем накопленной энергетической емкости легко преобразуется в магнитное индукционное поле;
- катушечная самоиндукция не провоцирует остановку заряженных частиц, а повторный этап зарядки с другим типом полярности обусловлен отсутствием конденсаторного противотока.
Резонанс в параллельной цепи (резонанс токов)
Итогом данного цикла является повторяющееся преобразование всего катушечного поля в конденсаторный заряд. Определение стандартной резонансной частоты осуществляется аналогично расчетам резонанса напряжения.
Присутствующая внутренняя активная составляющая R вызывает постепенное угасание колебательного процесса, чем и обуславливается токовый резонанс.
Резонанс токов в цепи с переменным током
Протекание тока внутри электрической цепи с последовательным, параллельным или смешанным типом соединения элементов, вызывает получение различных режимов функционирования.
- Таким образом, резонанс электрической цепи является режимом участка, который содержит элементы индуктивного и емкостного типа, а угол фазового сдвига между токовыми величинами и показателями напряжения нулевые.
- В соединяемых параллельным способом конденсаторе и катушечной части наблюдается равное реактивное сопротивление, чем обусловлен резонанс.
- Также должен учитываться тот факт, что для катушечной части и конденсатора характерно полное отсутствие активного сопротивления, а равенство реактивного сопротивления делает нулевыми общие токовые показатели внутри неразветвленной части электрической цепи и большие величины тока в ветвях.
- В условиях параллельного соединения индуктивной катушки и конденсатора получается колебательный контур, который отличается наличием создающего колебания генератора, не подключенного в контур, что делает систему замкнутой.
Явление, сопровождающееся резким уменьшением амплитуды силы токовых величин внешней цепи, которая используется для питания параллельно включенного конденсатора и обычной индуктивной катушки в условиях приближения частоты приложенного напряжения к частоте резонанса, носит название токового или параллельного резонанса.
Расчет резонансного контура
Необходимо помнить, что явление, представленное токовым резонансом, нуждается в очень грамотном и тщательном расчете резонансного контура.
Особенно важно выполнить правильный и точный расчет при наличии параллельного соединения, что позволит предотвратить развитие помех внутри системы. Чтобы расчет был правильным, требуется определиться с показателями мощности электрической сети.
Среднюю стандартную мощность, которая рассеивается в условиях резонансного контура, можно выразить среднеквадратичными показателями тока и напряжения.
В условиях резонанса стандартный коэффициент мощности составляет единицу, а формула расчета имеет вид:
Формула расчета
С целью правильного определения нулевого импеданса в условиях резонанса потребуется использовать стандартную формулу:
Резонансные кривые
Резонанс колебательной частоты аппроксимируется по следующей формуле:
Резонанс колебательного контура
Чтобы получить максимально точные данныепо формулам, все получаемые в процессе расчетов значения рекомендуется не подвергать округлению.
Некоторыми физиками расчеты значений резонансного контура осуществляются в соответствии с методом векторной диаграммы активных токовых величин.
В таком случае грамотный расчет и правильная настройка приборов гарантирует достойную экономию при условии переменного тока.
Резонансные цепи применяются преимущественно для выделения сигнала на нужных частотах в результате фильтрования других сигналов, поэтому самостоятельные расчеты контура должны быть предельно точными.
Заключение
Резонанс токовых величин в физике — это естественное явление, сопровождающееся резким возрастанием амплитуды колебания внутри системы, что обусловлено совпадением показателей собственных и внешних возмущающих частот.
Подобный вариант явлений характеризует электрические схемы с наличием элементов, представленных нагрузками активного, индуктивного и емкостного типа. Таким образом, токовый резонанс — один из наиважнейших параметров, широко используемых в настоящее время в целом ряде современных отраслей, включая промышленное электрическое снабжение и радиосвязь.
Источник: https://proprovoda.ru/provodka/rezonans-tokov.html
Резонанс в электрической цепи
При определенном сочетании частоты сигнала и реактивного сопротивления образуется резонанс в электрической цепи. Радиолюбители применяют его для настройки на определенную передающую станцию.
Конструкторы линий электропередач делают специальные расчеты, чтобы предотвратить броски напряжения и аварийные ситуации.
Представленные ниже сведения помогут успешно решать практические задачи на основе особенностей этого явления.
При резонансе в цепи переменного тока резко увеличивается амплитуда сигнала
Причины резонанса
Классический пример с приказом командира идти марширующим солдатам «не в ногу» перед мостом наглядно демонстрирует суть этого явления.
Если не использовать такую предосторожность, колебания могут увеличиться до критичного значения, вплоть до разрушения конструкции. Для получения максимальной амплитуды раскачивают в определенном ритме качели.
Приведенные примеры демонстрируют существенное увеличение результата при совпадении частот внешнего воздействия и непосредственно самой системы.
Электрический резонанс по своим принципам не отличается от механических аналогов. Он образуется при совпадении частот внешнего сигнала и контура. Функции накопителей энергии выполняют реактивные индукционные и емкостные элементы. Потери (постепенное уменьшение амплитуды) обеспечивает электрическое сопротивление цепи, что аналогично коэффициенту трения.
Принцип резонанса токов
Для создания необходимых условий электро резонанса необходимо создать параллельный контур с тремя типовыми компонентами:
- сопротивлением (R);
- емкостью (C);
- индуктивностью (L).
Схему подключают к источнику питания с напряжением (U)
На определенной частоте суммарные стоки через реактивные элементы (IL, Ic) становятся значительно больше, чем ток источника (I). Это явление называют резонансом тока.
Характеристики резонанса
Внутреннее сопротивление – формула
Это явление образуется при одинаковых реактивных составляющих цепи. Такое распределение позволяет обеспечить равномерную циркуляцию магнитной и электрической составляющих энергии (через индуктивность и конденсатор, соответственно). Такой контур называют «колебательным» по аналогии с механическим маятником.
При достижении определенной резонансной частоты (w) в параллельном (последовательном) контуре импеданс максимален (минимален). Соответствующим образом при изменении электрического сопротивления уменьшается (увеличивается) ток.
Резонанс токов и напряжений
Как рассчитать потребление электрической энергии
Параллельный контур используют, чтобы создать резонанс тока. Для выполнения отмеченных выше условий выбирают равные значения реактивных проводимостей (BL и Bc). По мере увеличения частоты общее сопротивление контура возрастает, что сопровождается уменьшением силы тока.
График изменения тока и проводимости, формулы для расчетов
В последовательном резонансном контуре устанавливают аналогичные функциональные компоненты. Эта схема при достижении резонансной частоты уменьшает сопротивление, что сопровождается существенным увеличением напряжения на реактивных составляющих, по сравнению с электродвижущей силой источника питания.
Резонанс напряжений в цепи переменного тока: график, электрическая схема и формула расчета
RLC-цепь
Для уточнения процессов надо изучить особенности компонентов типовой RLC цепи. Если к источнику переменного тока подсоединить конденсатор, напряжение на его обмотках будет изменяться по аналогии с исходным сигналом. Для расчетов пользуются понятием емкостного сопротивления Xc, которое определяется формулой:
Xc = 1/2π * f * C,
где:
- f – частота;
- С – емкость.
По мере роста частоты увеличивается емкостное сопротивление, и уменьшается ток:
I = U/ Xc.
Этот элемент выполняет определенные ограничительные функции. Однако он не рассеивает энергию c преобразованием в тепло как обычное электрическое сопротивление R.
К сведению. Для упрощения здесь рассмотрена идеальная емкость. В действительности каждый электронный компонент создает активное сопротивление току, что в определенной ситуации сопровождается нагревом.
Для расчета влияния индуктивной составляющей применяют формулы:
- XL = 2π * f * L;
- I = U/XL;
- I = U/2π * f * L.
При подключении катушки к источнику питания образуется магнитное поле, которое препятствует прохождению тока. Формулы демонстрируют прямую зависимость сопротивления от частоты и значения индуктивности (L).
Электрический резонанс
- Для полноценного изучения (применения) явления надо учитывать полное сопротивление цепи (Z). Вместе с потерями его можно выразить следующей формулой при последовательном подключении функциональных элементов:
- Z = √ R2 + (2π * f * L – 1/2π * f * C)2.
- По закону Ома:
- I = U/Z = U/ √ R2 + (2π * f * L – 1/2π * f * C)2.
- Если соблюдается равенство реактивных составляющих, сопротивление уменьшается с одновременным увеличением силы тока. При соблюдении такого условия несложно вычислить резонансную частоту (Fрез):
- 2π * f * L = 1/2π * f * C;
- Fрез = 1/2π * √ L*C.
Резонанс напряжений, достигающих максимальной амплитуды
Получить наибольшую амплитуду в последовательном контуре можно с помощью изменения следующих параметров:
- индуктивности;
- емкости;
- частоты.
- Значения отдельных компонентов устанавливают с применением рассмотренных выше формул. Так, величину емкости можно вычислить следующим образом:
- C = 1/ f2 * L.
- Если реактивные компоненты значительно больше активного сопротивления, на клеммах конденсатора или катушки можно получить повышение напряжения, по сравнению с источником.
Резонанс токов через реактивные элементы
В параллельном контуре оперируют с понятиями реактивных проводимостей (BL и Bc). Как и в предыдущем примере, для создания резонансного режима необходимо обеспечить равенство этих параметров. Дополнительным условием является совпадение частот (источника и контура). Ток при резонансе будет проходить только через активное сопротивление R.
Двойственность RLC-контуров
Из представленных сведений можно сделать два вывода с учетом выбранного варианта соединения функциональных компонентов цепи:
- Последовательный (резонанс напряжений) – минимальное значение импеданса на Fрез, которое в идеальных условиях равно R;
- Параллельный (резонанс токов) – на Fрез импеданс увеличивается до максимального значения.
Собственная частота резонансного контура
- Этот параметр вычисляют по формуле:
- w = 1/√ L*C.
- Если частота контура совпадает с частотой внешнего сигнала, амплитуда колебаний значительно увеличивается.
Применение резонансного явления
Резонанс в электрических цепях используют для фильтрации сигналов. Выбирают соответствующую схему обработки для ограничения необходимого диапазона либо расширения полосы пропускания.
С помощью последовательного контура можно повысить напряжение питания, если снабжающая организация не обеспечивает стабильность параметров сети. Такие неприятности встречаются при подключении потребителей на дачных участках и в коттеджных поселках, в сравнительно небольших населенных пунктах.
Недостаток ликвидируют конденсаторами, которые добавляют в электрическую цепь. Подобные решения помогают восстановить работоспособность дрели, станка, другого мощного оборудования. Обмотки соответствующего привода выполняют функции индуктивного компонента колебательного контура.
Параллельное подключение конденсаторов компенсирует потери, созданные реактивной мощностью. Этот вариант обеспечивает циркуляцию энергии между накопителем и подключенной обмоткой.
Без такого дополнения часть энергии будет бесполезно потребляться сетью питания. Следует подчеркнуть, что счетчик в любом случае фиксирует потребление.
Данная модернизация поможет сэкономить на оплате коммунальных услуг.
Резонансные явления способны чрезмерно увеличить силу тока или напряжение. Необходим точный расчет электрических цепей, чтобы предотвратить перегрев и повреждение проводов, короткие замыкания и другие аварийные ситуации.
Использование резонанса напряжений для передачи радиосигнала
Применение последовательного колебательного контура удобно изучать на конкретном примере. При конструировании передающих устройств, например, уменьшение импеданса на определенной частоте позволяет сделать настройку на определенный сигнал. Такую задачу решают с помощью колебательного контура.
Распределение спектра на экране измерительного прибора после обработки фильтром
Точно спроектированный фильтр будет «убирать» паразитные составляющие без дополнительных средств контроля и автоматизации. Такое решение, кроме простоты и минимальной стоимости, обеспечивает экономное потребление энергии генератором сигнала.
Как показано на практических примерах, резонанс может выполнять полезные и вредные функции. Точный расчет поможет создать качественную электрическую цепь с заданными техническими параметрами.
Видео
Источник: https://amperof.ru/teoriya/rezonans-v-elektricheskoj-cepi.html
Резонанс токов
Резонанс токов возникает в электрических
цепях переменного тока при параллельном
соединении ветвей с разнохарактерными
(индуктивными и емкостными) реактивными
сопротивлениями. В режиме резонанса
токов реактивная индуктивная проводимость
цепи оказывается равной ее реактивной
емкостной проводимости, т.е. BL=BC.
Простейшей электрической цепью, в
которой может наблюдаться резонанс
токов, является цепь с параллельным
соединением катушки индуктивности и
конденсатора. Данная схема соответствует
цепи, представленной на рис.
8, а, для
которойR2 =
0, а R1=Rк
(здесьRк
– активное сопротивление катушки
индуктивности). Полная проводимость
такой цепиY=.
Условие резонанса токов (BL=BC)
можно записать через соответствующие
параметры электрической цепи. Так как
реактивная проводимость катушки, имеющей
активное сопротивлениеRк,
определяется выражениемBL=XL/
png» width=»25″>=L/(Rк2+2L2),
а проводимость конденсатора без учета
его активного сопротивления (RC= 0)BC=XC/
png» width=»27″>= 1/XC=C,
то условие резонанса может быть записано
в виде
L/(+2L2) = C.
Из этого выражения следует, что резонанс
токов в такой цепи можно получить при
изменении одного из параметров Rк,L,Cипри
постоянстве других. При некоторых
условиях в подобных цепях резонанс
может возникать и при одновременном
изменении указанных параметров.
Простейшие резонансные цепи, состоящие
из параллельно соединенных между собой
катушки индуктивности и конденсатора,
широко применяются в радиоэлектронике
в качестве колебательных контуров,
резонанс токов в которых достигается
при некоторой определенной частоте
поступающего на вход соответствующего
устройства сигнала.
В лабораторных условиях наиболее часто
резонанс токов достигается при неизменной
индуктивности катушки L, путем
изменения емкостиСбатареи
конденсаторов.
С изменением емкостной
проводимостиBC=C,
пропорциональной емкости конденсатора,
происходит изменение полной проводимостиY, общего токаIи коэффициента
мощности cos. Указанные
зависимости приведены на рис. 10,a.
Анализ этих зависимостей показывает,
что при увеличении емкости от нуля
полная проводимость электрической цепи
сначала уменьшается, достигает при
(BL=BC) своего
минимума, а затем возрастает с увеличениемС, в пределе стремясь к бесконечности.
Общий токI=YU, потребляемый
цепью, пропорционален полной проводимости.
Поэтому характер его изменения подобен
характеру изменения проводимости.
Коэффициент мощности cosс увеличением емкости сначала возрастает,
а затем уменьшается, в пределе стремясь
к нулю, так как cos=G/Y.
В результате анализа указанных
зависимостей можно установить, что
резонанс токов характеризуется следующими явлениями.
- a)б)
- Рис. 10
- 1. При резонансе токов полная проводимость
всей электрической цепи приобретает
минимальное значение и становится
равной активной ее составляющей: - Y = =G.
- 2. Минимальное значение проводимости
обусловливает минимальное значение
тока цепи: - I = YU = GU.
- 3. Емкостный ток ICи индуктивная
составляющаяIL тока катушкиIкоказываются при этом равными по величине,
а активная составляющая тока катушкиIа1 становится равной токуI,
потребляемому из сети: - Iр1
= IL = BLU = BCU =
IC =
Iр2; Iа = Iа1 =GU = YU =I. - При этом реактивные составляющие токов
IL иICв зависимости
от значений реактивных проводимостей
могут приобретать теоретически весьма
большие значения и намного превышать
токI, потребляемый электрической
цепью из сети. - 4. Реактивная составляющая полной
мощности цепи при BL=BCоказывается равной нулю: - Q = BLU2 BCU2 = QL QC = 0.
- При этом индуктивная и емкостная
составляющие реактивной мощности также
могут приобретать весьма большие
значения, оставаясь равными друг другу. - 5. Полная мощность цепи при резонансе
равна ее активной составляющей: - S = YU
2 = GU
2 = P. - 6. Коэффициент мощности всей цепи при
резонансе: - cos = P/S = GU
2/YU
2 = 1.
Напряжение и ток электрической цепи
при резонансе токов совпадают по фазе.
Векторная диаграмма, построенная для
условий резонанса токов и применительно
к рассматриваемой цепи, представлена
на рис.
10, б. В табл. 2 методических
указаний по выполнению работы обозначениямIL,
IK,
IC
соответствуют обозначенияIр1,
I1,
Iр2
на векторной диаграмме токов (рис.
10,б).
Резонанс токов находит широкое применение
в силовых электрических цепях для
повышения коэффициента мощности, так
как это имеет большое технико-экономическое
значение.
Большинство промышленных
потребителей переменного тока имеют
активно-индуктивный характер; некоторые
из них работают с низким коэффициентом
мощности и потребляют значительную
реактивную мощность.
К таким потребителям
могут быть отнесены асинхронные двигатели
(особенно работающие с неполной
нагрузкой), установки электрической
сварки, высокочастотной закалки и т.д.
Для уменьшения реактивной мощности и
повышения коэффициента мощности
параллельно потребителю включают
батарею конденсаторов.
Реактивная
мощность конденсаторной батарей снижает
общую реактивную мощность установки и
тем самым увеличивает коэффициент
мощности. Повышение коэффициента
мощности приводит к уменьшению тока в
проводах за счет снижения его реактивной
составляющей и, соответственно, к
уменьшению потерь энергии в генераторе
и подводящих проводах.
Источник: https://studfile.net/preview/3020250/page:9/
Резонансы в цепях синусоидального тока (Лекция №8)
Резонансом называется такой режим работы цепи, включающей в себя индуктивные и емкостные элементы, при котором ее входное сопротивление (входная проводимость) вещественно. Следствием этого является совпадение по фазе тока на входе цепи с входным напряжением.
Резонанс в цепи с последовательно соединенными элементами (резонанс напряжений)
Для цепи на рис.1 имеет место
где
; | (1) |
. | (2) |
В зависимости от соотношения величин и возможны три различных случая.
1. В цепи преобладает индуктивность, т.е. , а следовательно,
. Этому режиму соответствует векторная диаграмма на рис. 2,а.
2.В цепи преобладает емкость, т.е. , а значит, . Этот случай отражает векторная диаграмма на рис. 2,б.
3. — случай резонанса напряжений (рис. 2,в).
Условие резонанса напряжений
. | (3) |
При резонансе напряжений или режимах, близких к нему, ток в цепи резко возрастает. В теоретическом случае при R=0 его величина стремится к бесконечности. Соответственно возрастанию тока увеличиваются напряжения на индуктивном и емкостном элементах, которые могут во много раз превысить величину напряжения источника питания.
Пусть, например, в цепи на рис. 1 . Тогда , и, соответственно, .
Явление резонанса находит полезное применение на практике, в частности в радиотехнике. Однако, если он возникает стихийно, то может привести к аварийным режимам вследствие появления больших перенапряжений и сверхтоков.
Физическая сущность резонанса заключается в периодическом обмене энергией между магнитным полем катушки индуктивности и электрическим полем конденсатора, причем сумма энергий полей остается постоянной.
Суть дела не меняется, если в цепи имеется несколько индуктивных и емкостных элементов. Действительно, в этом случае , и соотношение (3) выполняется для эквивалентных значений LЭ и CЭ .
Как показывает анализ уравнения (3), режима резонанса можно добиться путем изменения параметров L и C, а также частоты. На основании (3) для резонансной частоты можно записать
. | (4) |
Резонансными кривыми называются зависимости тока и напряжения от частоты. В качестве их примера на рис. 3 приведены типовые кривые I(f); и для цепи на рис. 1 при U=const.
Важной характеристикой резонансного контура является добротность Q, определяемая отношением напряжения на индуктивном (емкостном) элементе к входному напряжению:
, | (5) |
— и характеризующая “избирательные” свойства резонансного контура, в частности его полосу пропускания .
Другим параметром резонансного контура является характеристическое сопротивление, связанное с добротностью соотношением
, | (6) |
или с учетом (4) и (5) для можно записать:
. | (7) |
- Резонанс в цепи с параллельно соединенными элементами (резонанс токов)
- Для цепи рис. 4 имеем
- ,
- где
; | (8) |
. | (9) |
В зависимости от соотношения величин и , как и в рассмотренном выше случае последовательного соединения элементов, возможны три различных случая.
В цепи преобладает индуктивность, т.е. , а следовательно, . Этому режиму соответствует векторная диаграмма на рис. 5,а.
В цепи преобладает емкость, т.е. , а значит, . Этот случай иллюстрирует векторная диаграмма на рис. 5,б.
— случай резонанса токов (рис. 5,в).
Условие резонанса токов или
. | (10) |
При этом, как следует из (8) и (9), . Таким образом, при резонансе токов входная проводимость цепи минимальна, а входное сопротивление, наоборот, максимально. В частности при отсутствии в цепи на рис. 4 резистора R ее входное сопротивление в режиме резонанса стремится к бесконечности, т.е. при резонансе токов ток на входе цепи минимален.
Идентичность соотношений (3) и (5) указывает, что в обоих случаях резонансная частота определяется соотношением (4). Однако не следует использовать выражение (4) для любой резонансной цепи. Оно справедливо только для простейших схем с последовательным или параллельным соединением индуктивного и емкостного элементов.
- При определении резонансной частоты в цепи произвольной конфигурации или, в общем случае, соотношения параметров схемы в режиме резонанса следует исходить из условия вещественности входного сопротивления (входной проводимости) цепи.
- Например, для цепи на рис. 6 имеем
- Поскольку в режиме резонанса мнимая часть должна быть равна нулю, то условие резонанса имеет вид
- ,
- откуда, в частности, находится резонансная частота.
- Резонанс в сложной цепи
Условие резонанса для сложной цепи со смешанным соединением нескольких индуктивных и емкостных элементов, заключающееся в равенстве нулю мнимой части входного сопротивления или входной проводимости , определяет наличие у соответствующих этому условию уравнений относительно нескольких вещественных корней, т.е. таким цепям соответствует несколько резонансных частот.
При определении резонансных частот для реактивного двухполюсника аналитическое выражение его входного реактивного сопротивления или входной реактивной проводимости следует представить в виде отношения двух полиномов по степеням , т.е. или .
Тогда корни уравнения дадут значения частот, которые соответствуют резонансам напряжений, а корни уравнения — значения частот, при которых возникают резонансы токов.
Общее число резонансных частот в цепи на единицу меньше количества индуктивных и емкостных элементов в схеме, получаемой из исходной путем ее сведения к цепи (с помощью эквивалентных преобразований) с минимальным числом этих элементов. Характерным при этом является тот факт, что режимы резонансов напряжений и токов чередуются.
В качестве примера определим резонансные частоты для цепи рис. 7. Выражение входного сопротивления данной цепи имеет вид
- Из решения уравнения получаем частоту , соответствующую резонансу напряжений, а из решения уравнения — частоту , соответствующую резонансу токов.
- Литература
- Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
- Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
Контрольные вопросы и задачи
- Что такое резонанс напряжений, чем он характеризуется?
- Что такое резонанс токов, чем он характеризуется?
- В чем физическая сущность резонансных режимов?
- На основании каких условий в общем случае определяются резонансные частоты?
- В цепи на рис. 1 R=1 Ом; L=10 мГн; С=10 мкФ. Определить резонансную частоту и добротность контура.
Ответ: .
- Какие условия необходимы и достаточны, чтобы в цепи на рис. 1 выполнялось соотношение ?
- Определить резонансную частоту для цепи на рис. 7, если в ней конденсатор С3 заменен на резистор R3.
Ответ: .
Источник: https://toehelp.ru/theory/toe/lecture08/lecture08.html