Термопары: устройство и принцип работы простым языком, типы

Принцип действия и устройство термопары предельно просты. Это обусловило популярность данного прибора и широкое применение во всех отраслях науки и техники. Термопара предназначается для измерения температур в широком диапазоне – от -270 до 2500 градусов по Цельсию.

Устройство вот уже не одно десятилетие является незаменимым помощником инженеров и ученых. Работает надежно и безотказно, а показания температуры всегда правдивые. Более совершенного и точного прибора просто не существует. Все современные устройства функционируют по принципу термопары.

Работают в тяжелых условиях.

Термопары: устройство и принцип работы простым языком, типы

Назначение термопары

Данное устройство преобразовывает тепловую энергию в электрический ток и позволяет измерять температуру. В отличие от традиционных ртутных градусников, способно работать в условиях как экстремально низких, так и экстремально высоких температур.

Данная особенность обусловила широкое применение термопары в самых разнообразных установках: промышленные металлургические печи, газовые котлы, вакуумные камеры для химико-термической обработки, духовой шкаф бытовой газовой плиты.

Принцип работы термопары всегда остается неизменным и не зависит от того, в каком устройстве она монтируется.

От надежной и бесперебойной работы термопары зависит работа системы аварийного отключения приборов в случае превышения допустимых лимитов температур. Поэтому данное устройство должно быть надежным и давать точные показания, чтобы не подвергать риску жизнь людей.

Принцип действия термопары

Термопара имеет три основных элемента. Это два проводника электричества из разных материалов, а также защитная трубка. Два конца проводников (их еще называют термоэлектродами) спаяны, а два других подключаются к потенциометру (прибор для измерения температуры).

Если говорить простым языком, принцип работы термопары заключается в том, что спай термоэлектродов помещается в среду, температуру которой необходимо измерить.

В соответствии с правилом Зеебека, возникает разность потенциалов на проводниках (иначе – термоэлектричество). Чем больше температура среды – тем более значимой является разница потенциалов.

Соответственно, стрелка прибора отклоняется больше.

Термопары: устройство и принцип работы простым языком, типы

В современных комплексах измерения на смену механическому устройству пришли цифровые индикаторы температуры.

Однако далеко не всегда новый прибор превосходит по своим характеристикам старые аппараты еще советских времен.

В технических вузах, да и в научно-исследовательских учреждениях, и по сей день пользуются потенциометрами 20-30-летней давности. И они демонстрируют поразительную точность и стабильность измерений.

Эффект Зеебека

На данном физическом явлении основан принцип работы термопары. Суть заключается в следующем: если соединить между собой два проводника из разных материалов (иногда используются полупроводники), то по такому электрическому контуру будет циркулировать ток.

Таким образом, если нагревать и охлаждать спай проводников, то стрелка потенциометра будет колебаться. Засечь ток также может позволить и гальванометр, подключенный в цепь.

В том случае, если проводники выполнены из одного и того же материала, то электродвижущая сила не будет возникать, соответственно, нельзя будет измерить температуру.

Термопары: устройство и принцип работы простым языком, типы

Схема подключения термопары

Наиболее распространенными способами подключения измерительных приборов к термопарам являются так называемый простой способ, а также дифференцированный.

Суть первого метода заключается в следующем: прибор (потенциометр или гальванометр) напрямую соединяется с двумя проводниками.

При дифференцированном методе спаивается не одни, а оба конца проводников, при этом один из электродов «разрывается» измерительным прибором.

Термопары: устройство и принцип работы простым языком, типы

Нельзя не упомянуть и о так называемом дистанционном способе подключения термопары. Принцип работы остается неизменным. Разница лишь в том, что в цепь добавляются удлинительные провода. Для этих целей не подойдет обычный медный шнур, так как компенсационные провода в обязательном порядке должны выполняться из тех же материалов, что и проводники термопары.

Термопары: устройство и принцип работы простым языком, типы

Материалы проводников

Принцип действия термопары основан на возникновении разности потенциалов в проводниках. Поэтому к подбору материалов электродов необходимо подходить очень ответственно. Различие в химических и физических свойствах металлов является основным фактором работы термопары, устройство и принцип действия которой основаны на возникновении ЭДС самоиндукции (разности потенциалов) в цепи.

Технически чистые металлы для применения в качестве термопары не подходят (за исключением АРМКО-железа). Обычно используются различные сплавы цветных и благородных металлов.

Такие материалы имеют стабильные физико-химические характеристики, благодаря чему показания температуры всегда будут точными и объективными.

Стабильность и точность – ключевые качества при организации эксперимента и производственного процесса.

В настоящее время наиболее распространены термопары следующих видов: E, J, K.

Термопары: устройство и принцип работы простым языком, типы

Термопара типа E

В качестве материалов для проводников используются константан и хромель. Изделия данного типа хорошо зарекомендовали себя по части надежности и точности показаний. Свидетельств тому – многочисленные положительные отзывы специалистов. Однако данный состав демонстрирует точность измерений лишь в положительном диапазоне температур до 600 градусов по Цельсию включительно.

Термопара типа J

По принципу работы термопара не отличается от предыдущей. Однако хромель уступил место технически чистому железу, что позволило существенно расширить диапазон рабочей температуры с сохранением стабильности показаний. Он составляет от -100 до 1200 градусов по Цельсию.

Термопары: устройство и принцип работы простым языком, типы

Термопара типа K

Это, пожалуй, самый распространенный и применяемый повсюду тип термопары. Пара хромель — алюминий отлично работает при температурах от -200 до 1350 градусов по Цельсию. Данный тип термопары отличается большой чувствительностью и фиксирует даже незначительный скачок температуры.

Благодаря такому набору параметров, термопара применяется и на производстве, и для научных исследований. Но есть у нее и существенный недостаток – влияние состава рабочей атмосферы. Так, если данный вид термопары будет работать в среде CO2, то термопара будет давать некорректные показания. Данная особенность ограничивает применение устройств такого типа.

Схема и принцип работы термопары остаются неизменными. Разница лишь в химическом составе электродов.

Термопары: устройство и принцип работы простым языком, типы

Проверка работы термопары

В случае выхода из строя термопары не подлежит ремонту. Теоретически можно, конечно, ее починить, но вот будет ли прибор после этого показывать точную температуру – это большой вопрос.

Иногда неисправность термопары не является явной и очевидной. В частности, это касается газовых колонок. Принцип работы термопары все тот же. Однако она выполняет несколько иную роль и предназначается не для визуализации температурных показаний, а для работы клапанов.

Поэтому, чтобы выявить неисправность такой термопары, необходимо подключить к ней измерительный прибор (тестер, гальванометр или потенциометр) и нагреть спай термопары. Для этого не обязательно держать ее над открытым огнем.

Достаточно лишь зажать его в кулак и посмотреть, будет ли отклоняться стрелка прибора.

Причины выхода из строя термопар могут быть разными.

Так, если не надеть специальное экранирующее устройство на термопару, помещенную в вакуумную камеру установки ионно-плазменного азотирования, то с течением времени она будет становиться все более хрупкой до тех пор, пока не переломается один из проводников. Кроме того, не исключается и вероятность неправильной работы термопары из-за изменения химического состава электродов. Ведь нарушаются основополагающие принципы работы термопары.

Газовая аппаратура (котлы, колонки) также оснащается термопарами. Основной причиной выхода из строя электродов являются окислительные процессы, которые развиваются при высоких температурах.

В том случае, когда показания прибора являются заведомо ложными, а при внешнем осмотре не были обнаружены слабые зажимы, то причина, скорее всего, кроется в выходе из строя контрольно-измерительного прибора. В этом случае его необходимо отдать в ремонт. Если имеется соответствующая квалификация, то можно попытаться устранить неполадки самостоятельно.

Да и вообще, если стрелка потенциометра или цифровой индикатор показывают хоть какие-то «признаки жизни», то термопара является исправной. В таком случае проблема, совершенно очевидно, кроется в чем-то другом. И соответственно, если прибор никак не реагирует на явные изменения температурного режима, то можно смело менять термопару.

Однако прежде чем демонтировать термопару и ставить новую, нужно полностью убедиться в ее неисправности. Для этого достаточно прозвонить термопару обычным тестером, а еще лучше – померить напряжение на выходе.

Только обычный вольтметр здесь вряд ли поможет. Понадобится милливольтметр или тестер с возможностью подбора шкалы измерения. Ведь разность потенциалов является очень маленькой величиной.

И стандартный прибор ее даже не почувствует и не зафиксирует.

Термопары: устройство и принцип работы простым языком, типы

Преимущества термопары

Почему за столь долгую историю эксплуатации термопары не были вытеснены более совершенными и современными датчиками измерения температуры? Да по той простой причине, что до сих пор ей не может составить конкуренцию ни один другой прибор.

Во-первых, термопары стоят относительно дешево. Хотя цены могут колебаться в широком диапазоне в результате применения тех или иных защитных элементов и поверхностей, соединителей и разъемов.

Во-вторых, термопары отличаются неприхотливостью и надежностью, что позволяет успешно эксплуатировать их в агрессивных температурных и химических средах. Такие устройства устанавливаются даже в газовые котлы. Принцип работы термопары всегда остается неизменным, вне зависимости от условий эксплуатации. Далеко не каждый датчик другого типа сможет выдержать подобное воздействие.

Технология изготовления и производства термопар является простой и легко реализуется на практике. Грубо говоря – достаточно лишь скрутить или сварить концы проволок из разных металлических материалов.

https://www.youtube.com/watch?v=jP0vp1dY374

Еще одна положительная характеристика – точность проводимых измерений и мизерная погрешность (всего 1 градус). Данной точности более чем достаточно для нужд промышленного производства, да и для научных исследований.

Недостатки термопары

Недостатков у термопары не так много, в особенности если сравнивать с ближайшими конкурентами (температурными датчиками других типов), но все же они есть, и было бы несправедливо о них умолчать.

Так, разность потенциала измеряется в милливольтах. Поэтому необходимо применять весьма чувствительные потенциометры. А если учесть, что не всегда приборы учета можно разместить в непосредственной близости от места сбора экспериментальных данных, то приходится применять некие усилители. Это доставляет ряд неудобств и приводит к лишним затратам при организации и подготовке производства.

Читайте также:  Как сделать, чтобы светильник и прожектор работали от датчика движения?

Источник: https://www.syl.ru/article/380242/printsip-rabotyi-termoparyi-opisanie-ustroystvo-shema

Термопары: подробно простым языком

Термопары — это наиболее распространенное устройство для измерения температуры. Термопары генерируют напряжение при нагревании и возникающий ток позволяет проводить измерения температуры. Отличается своей простотой, невысокой стоимостью, но внушительной долговечностью. Благодаря своим преимуществам, термопара используется повсеместно.

Термопары: устройство и принцип работы простым языком, типы Стандартная термопара
Рекомендуем обратить внимание и на другие приборы для измерения температуры.

Принцип работы термопары

Термопара представляет собой два провода, изготовленных из различных металлов. Эти два провода скреплены или сварены вместе и образуют спай. Когда на этот спай оказывают воздействие изменения температуры, то термопара реагирует на них генерируя напряжение, пропорциональное по величине изменениям температуры.

Если термопара подсоединена к электрической цепи, то величина генерируемого напряжения будет отображаться на шкале измерительного прибора. Затем показания прибора могут быть преобразованы в температурные показания с помощью таблицы. На некоторых приборах шкала откалибрована непосредственно в градусах.

Термопары: устройство и принцип работы простым языком, типы Термопара в электрической цепи

Спай термопары

В конструкции большинства термопар предусмотрен только один спай. Однако, когда термопара подсоединяется к электрической цепи, то в точках ее подсоединения может образовываться еще один спай.

Термопары: устройство и принцип работы простым языком, типы Цепь термопары

Цепь, показанная на рисунке, состоит из трех проводов, помеченных как А, В и С. Провода скручены между собой и помечены как D и Е.

Спай представляет собой дополнительный спай, который образуется, когда термопара подсоединяется к цепи. Этот спай называется свободным (холодным) спаем термопары. Спай Е — это рабочий (горячий) спай.

В цепи находится измерительный прибор, который измеряет разницу величин напряжения на двух спаях.

Два спая соединены таким образом, что их напряжение противодействует друг другу. Таким образом, на обоих спаях генерируется одна и та же величина напряжения и показания прибора будут равны нулю.

Так как существует прямо пропорциональная зависимость между температурой и величиной напряжения, генерируемой спаем термопары, то два спая будут генерировать одни и те же величины напряжения, когда температура на них будет одинаковой.

Термопары: устройство и принцип работы простым языком, типы Воздействие нагрева одного спая термопары

Когда спай термопары нагревается, величина напряжения повышается прямо пропорционально. Поток электронов от нагретого спая протекает через другой спай, через измерительный прибор и возвращается обратно на горячий спай.

Прибор показывает разницу напряжения между двумя спаями. Разность напряжения между двумя спаями.

Разность напряжения, показываемая прибором, преобразуется в температурные показания либо с помощью таблицы, либо прямо отображается на шкале, которая откалибрована в градусах.

Холодный спай термопары

Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору.

В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.

Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится. В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры.

Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.

Термопары: устройство и принцип работы простым языком, типы Цепь термопары с компенсирующим резистором

Рабочий спай термопары (горячий)

Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.

Термопары: устройство и принцип работы простым языком, типы Рабочий спай и холодный спай

Типы термопары

Термопары конструируются с учетом диапазона измеряемых температур и могут изготавливаться из комбинаций различных металлов. Комбинация используемых металлов определяет диапазон температур, измеряемых термопарой.

По этой причине была разработана маркировка с помощью букв для обозначения различных типов термопар.

Каждому типу присвоено соответствующее буквенное обозначение, и это буквенное обозначение указывает на комбинацию используемых металлов в данной термопаре.

Термопары: устройство и принцип работы простым языком, типы Типы термопар и диапазон их температур

Когда термопара подключается к электрической цепи, то она не будет работать нормально пока не будет соблюдена полярность при подключении. Плюсовые провода должны быть соединены вместе и подсоединены к плюсовому выводу цепи, а минусовые к минусовому.

Если провода перепутать, то рабочий спай и холодный спай не будут в противофазе и показания температуры будут неточными.
Одним из способов определения полярности проводов термопары -это определение по цвету изоляции на проводах.

Помните, что минусовой провод во всех термопарах — красный.

Термопары: устройство и принцип работы простым языком, типы Цвет изоляции проводов термопар

Во многих случаях приходится использовать провода для удлинения протяженности цепи термопары. Цвет изоляции соединительных проводов также несет в себе информацию. Цвет внешней изоляции соединительных проводов — разный, в зависимости от производителя, однако цвет первичной изоляции проводов обычно соответствует кодировке, указанной в таблице выше.

Неисправности термопары

Если термопара выдает неточные показания температуры, и было проверено, что нет ослабленных соединений, то причина может крыться либо в регистрирующем приборе, либо в самой термопаре, первым обычно проверяется регистрирующий прибор, так как приборы чаще выходят из строя, чем термопары.

Более того, если прибор показывает хоть какие-нибудь показания, пусть даже неточные, то, скорей всего, дело не в термопаре. Если термопара неисправна, то обычно она не выдает вообще никакого напряжения, и прибор не будет выдавать никаких показаний. Если показаний на приборе нет совсем, то вероятно дело в термопаре.

Если Вы подозреваете, что термопара вышла из строя, то проверьте ее сигнал на выходе с помощью прибора, который называется милливольтный потенциометр, который используется для измерения малых величин напряжения.

Термопары: устройство и принцип работы простым языком, типы Потенциометр

Источник: https://www.kipiavp.ru/pribori/termopara.html

Термопара ТХА, ТХК, хромель-алюмель, ТПП: принцип работы

13121 просмотров

Практически каждое отопительное оборудование требует применения дополнительных элементов, предостерегающих систему от перегрева. Одним из таких контролеров считается термопара. Принцип ее работы заключается в регулярном измерении температурного режима для поддержания заданного значения.

Термопары: устройство и принцип работы простым языком, типы

Общие характеристики

Согласно Номинальных статических характеристик преобразования ГОСТ Р8.585-2001 термопара – устройство, состоящее из 2-х разнородных контактирующих друг с другом проводников, предназначенное для измерения температуры. При изменении температурного режима на одном участке создается напряжение, вследствие чего происходит конвертация температуры в электроток.

Термопары: устройство и принцип работы простым языком, типы

Термопары

Конструкция элемента устроена из двух разнотипных проводников, которые соединяются друг с другом в одном узле. Существует три типа соединений:

  • спайка;
  • ручная скрутка;
  • сварка.

Зачастую в виде проводящих электроэнергию элементов применяется металлический проводник, однако встречаются случаи, когда вместо него используют полупроводниковые устройства. 

Параметры устройства определяет материал, из которого изготовлены проводники. Понятно, что любой металл образует сопротивление, значит будет производить электроток.

Но для корректной работы термопары используются определенные сплавы, которые выдают прогнозируемые вводные и точно с минимальной погрешностью определяют зависимость между температурой и сопротивлением.

Для определенного диапазона должен использовать определенный материл.

Говоря простым языком, термопара, в зависимости от материалов, из которых состоят проводники, позволяет определять температурный режим в разнообразных диапазонах значений. В целом, термопара определяет температуру ориентировочно от -250°С до +2 000°С.

ВИДЕО: Измерение температуры с помощью термопары

Принцип действия термопары

Вне зависимости от имени производителя, работа всех термопар основывается на термоэлектрической схеме, разработанной в 1821 году известным физиком Т.И. Зеебеком.

Принцип действия термопары заключается в поочередном соединении двух разновидных переходника в одно замкнутое кольцо.

Первый узел предназначен для нагрева, в результате чего, по кольцу образовывается электрический движущий заряд, который называется – термо-ЭДС. Под влиянием ЭДС-силы, по цепочке протекает электрически ток.

Термопары: устройство и принцип работы простым языком, типы

Схематическая работа устройства

Сама область нагрева называется узлом нагревательного предназначения, второй конец обозначается как холодный спай.

Чтобы измерить значение микро или милливольт электрической движущей силы, следует разъединить кольцо и соединить его при помощи микровольтметра.

Количество милливольт полностью зависит от интенсивности нагрева соединений и температурного режима холодного узла.

Принцип работы простым языком базируется на разности значений температуры двух соединительных спаев, между холодным и горячим обозначением.

Получается, что если область спая двух разных проводов нагреть, то в зоне несоединенных концов образуется разносторонний потенциал, измеряемый специальным инструментом. Преобразователи, разработанные по инновационным технологиям, возникшую разность электрической силы переводят в цифровые символы, обозначающие температурный режим нагрева соединенных узлами частей.

Конструкция устройства

Устройство производится разных форм и размеров. Подразделяется по конструктивному производству на два основных типа:

  • термопары, не имеющие корпуса;
  • с кожухом, служащим в качестве защиты.

В первом случае устройство в месте соединения не имеет закрытого корпуса, выполняющего защитную функцию от разнообразных воздействий внешней окружающей среды. Данный вид обеспечивает быстрое определение инертности и температурного режима, не затрачивая на процесс много времени.

Термопары: устройство и принцип работы простым языком, типы

Термопара для котельного оборудования

Второй тип производится подобно зонду, который выполнен из металлической трубы с хорошей внутренней изоляцией, способной противостоять высоким температурным показателям. Изнутри термопар оснащен термоэлектрической системой. Конструкция с защитным корпусом не поддается воздействиям агрессивной среды.

Читайте также:  Почему ноль звонится на фазу в розетке и опасно ли это?

Разновидности термопары

Принцип работы термопара достаточно прост и понятен, однако, прежде чем создать устройство своими руками, следует знать, чем отличаются такие модификации как ТХА,TKX, ТПП, ТСП, ТПР и ТВР, а также, по каким критериям и группам они распределяются.

  • Группа Е – состоит из комбинированного материала — хромель-константан. Соединительный спай обладает повышенной производительностью – более 69 мкВ/оС, подходящей для криогенного применения. Помимо всего, система не имеет магнитные свойства, а температурный режим варьируется от – 50°С до + 740°С.
  • Группа J – термоэлектроны производятся из положительного железа и отрицательного типа константаны. Разбег функционирования данной серии термопара меньше, чем в прошлой группе -40°С — + 750°С, однако показатель чувствительности более высокий – 50 мкВ/°С.
  • Группа К – самый распространенный тип устройств, состоящий из комбинации материалов – алюминий и хромель. Производительность системы равняется 40 мкВ/°С, функционирование происходит в пределах температурных показателей от – 200°С до 1 350°С. Следует помнить, что даже при низком уровне окисления в диапазоне температуры 800-1050°С, элемент из хромеля отсоединяется и приобретает намагниченное состояние, что называется «зеленая гниль». Данный фактор отрицательно сказывается на функционировании регулятора.
  • Группа М – применяется в комплектациях печей вакуумного вида. Рабочие силы варьируются от -260 до + 1400°С с максимальной погрешностью в 2 градуса.

Термопары: устройство и принцип работы простым языком, типы

Принцип работы термопары

  • Группа N – устройство выпускается для использования в устройствах обладающих температурными обозначениями – 270 и 1300°С, что является гарантией хорошей работоспособности и устойчивости перед окислительными процессами. Чувствительность не превышает 40 мкВ/°С.
  • Группы В, S, R отличаются стабильной работой с более пониженным ЭДС – 10мкВ/°С. Из-за плохой чувствительности, используется исключительно для определения повышенных температур.
  • Группы В, С, S – первый символ обозначает модификацию, подходящую для измерения температуры до 1 800оС, S – 1 600°С, С – до 1 500.
  • Рениево-вольфрамовые термопары применяются для измерения высоких температур 25 000°С и менее. Также устройство предназначено для устранения окислительной атмосферы, разрушающей материал.

Термопары: устройство и принцип работы простым языком, типы

Термопары хромель-алюмель

Монтаж

Принципиальной разницы между установкой российского или европейского оборудования нет – схема везде одинакова. Мы опишем самый простой способ.

  1. Откручиваете гайку внутри резьбового соединения к газопроводу.
  2. На самой термопаре откручиваете компенсационный винт.
  3. В отверстие монтажного кронштейна вставляете термопару.
  4. Протрите место соединения ветошью резьбовое соединение и гайку.
  5. Закрутите соединение до упора, но не затягивайте слишком сильно. Если есть необходимость, можно использовать прокладку.

Контролер газовой плиты должен быть соединен максимально плотно, но чтобы его можно было снять по мере надобности.

Термопары: устройство и принцип работы простым языком, типы

Термопара для печи

Обратите внимание на то, чтобы обе трубы были направлены строго вниз.

Теперь разбираемся, как работает. Концевой выключатель всегда расположен на несколько сантиметров ниже пленума под автоматом контроля безопасности плиты. Когда пленум нагревается до предела, выключатель дает сигнал на отключение горелки и сразу же срабатывает вентилятор. В этот момент происходит резкое снижение температуры.

На некоторых устройствах вентилятор не останавливается. Причиной этого может быть выключенный контроль вентилятора (посмотрите на рычаг, он должен быть на отметке «вкл») либо выход из строя термостата. Как вариант, может быть установлен ручной режим вместо автоматического.

После установки устройства необходимо проверить правильность работы. И если настройка происходит в лабораторных условиях, то калибровать термопару можно и собственноручно.

Для этого снимаете крышку блока управления и смотрите на циферблат. Со стороны вентилятора есть 2 датчика, которые изначально настроены на 25°F. Вам нужно выставить верхний на 115°F, нижний – не меньше 90°F.

Если во время градуировки или калибровки отчетливо слышен запах газа, необходимо проверить уплотнители или вызвать службы газа на предмет выявления утечки.

Преимущества и недостатки применения измерителя

Температурный датчик, невзирая на простоту в устройстве, обладает как преимуществами, так и недостатками.

Плюсы:

  • Широкий диапазон температурных режимов, делающих устройство самым устойчивым контактным датчиком перед высокими показателями.
  • В результате нарушения целостности спая можно полностью заменить узел или создать прямой контакт непосредственно через измеряемые системы.
  • Простота устройства, прочность и большой эксплуатационный срок.

Термопары: устройство и принцип работы простым языком, типы

Термопара «Арбат»

Минусы:

  • При установке температурного датчика необходимо регулярно контролировать изменения напряжения холодных спаев. Для облегчения задачи требуется приобрести дополнительный термистор. Также можно заменить устаревший прибор полупроводниковым сенсором, способным автоматически вносить изменения в ТЭДС.
  • Подверженность к поражению коррозией, в результате чего происходит термоэлектрическая недостаточность и нарушение градуировочных характеристик.
  • Электроды состоят из материалов, которые не считаются химически инертным, поэтому при нарушении герметичности корпуса система становится подверженной агрессивным процессам окружающей среды.
  • Длинные термопарные провода образовывают электромагнитное поле.
  • Возникают сложности в процессе создания вторичного преобразователя сигналов из-за несущественного взаимодействия ТЭДС и температурных режимов.
  • Для стабильной работы с термической инерцией, обязательным условием термопара считается обеспечение качественной электроизоляцией, заземление функционирующих спаев, предостерегающих от возникновения утечки в землю.

ВИДЕО: Сравнение термосопротивления и термопары. Основы измерения температуры от Emerson

Источник: http://www.PortalTepla.ru/kotli-i-kotelnoe-oborudovanie/termopara-prinsip-raboty/

Термопара: конструкция и принцип работы датчика, виды устройств для измерения температуры

Термопары: устройство и принцип работы простым языком, типы

Конструктивные особенности

Если относиться более скрупулезно к процессу замера температуры, то эта процедура осуществляется с помощью термоэлектрического термометра. Основным чувствительным элементом этого прибора считается термопара.

Сам процесс измерения происходит за счет создания в термопаре электродвижущей силы. Существуют некоторые особенности устройства термопары:

  • Термопары: устройство и принцип работы простым языком, типыЭлектроды соединяются в термопарах для измерения высоких температур в одной точке с помощью электрической дуговой сварки. При замере небольших показателей такой контакт выполняется с помощью пайки. Особенные соединения в вольфрам-рениевых и вольфрамо-молибденовых устройствах проводятся с помощью плотных скруток без дополнительной обработки.
  • Соединение элементов проводится только в рабочей зоне, а по остальной длине они изолированы друг от друга.
  • Метод изоляции осуществляется в зависимости от верхнего значения температуры. При диапазоне величины от 100 до 120 °C используется любой тип изоляции, в том числе и воздушный. При температуре до 1300 °C применяются трубки или бусы из фарфора. Если величина достигает до 2000 °C, то применяется изоляционный материал из оксида алюминия, магния, бериллия и циркония.
  • В зависимости от среды использования датчика, в которой происходит замер температуры, применяется наружный защитный чехол. Выполняется он в виде трубки из металла или керамики. Такая защита обеспечивает гидроизоляцию и поверхностное предохранение термопары от механических воздействий. Материал наружного чехла должен выдерживать высокую температуру воздействия и обладать отличной теплопроводностью.

Конструкция датчика во многом зависит от условий его применения. При создании термопары во внимание принимается диапазон измеряемых температур, состояние внешней среды, тепловая инерционность и т. д.

Принцип действия

Работа термопары основана на принципе термоэлектрического эффекта. Это явление было открыто физиком из Германии Т. Зеебеком в начале XIX века. Его суть состоит в следующем:

  • Термопары: устройство и принцип работы простым языком, типыЕсли соединить два термоэлектрода из разных металлов или сплавов в замкнутую электрическую цепь, а их рабочую поверхность подвергнуть воздействию разных температур, то по ней начнет протекать электрический ток.
  • Цепь, состоящая только из двух разных электродов, называется термоэлементом.
  • Работает термопара за счет электродвижущей силы, которая вызывает ток в цепи и зависит от материала элементов и разности температуры их соединения.
  • Элемент, из которого поступает ток от горячего соединения к холодному, считается положительным электродом, а от холодного к горячему — отрицательным.
  • Если говорить простым языком, то зная температуру одного соединения, которая поддерживается обычно постоянной, в результате измерения значения тока можно узнать величину нагрева другого соединения.

Термопара ПП расшифровывается как платинородий-платиновый, где первым идет обозначение положительного электрода, а вторым — отрицательного. Величина электродвижущей силы составляет небольшую величину, которая измеряется милливольтами при разнице температуры в 100 К (173,15 °C).

Термопары: устройство и принцип работы простым языком, типы

Виды устройств

Каждый вид термопар имеет свое обозначение, и разделены они согласно общепринятому стандарту. Каждый тип электродов имеет свое сокращение: ТХА, ТХК, ТВР и т. д. Распределяются преобразователи соответственно классификации:

  • Термопары: устройство и принцип работы простым языком, типыТип E — представляет собой сплав хромеля и константана. Характеристикой этого устройства считается высокая чувствительность и производительность. Особенно это подходит для использования при крайне низких температурах.
  • J — относится к сплаву железа и константана. Отличается высокой чувствительностью, которая может достигать до 50 мкВ/ °C.
  • Вид K — считается самым популярным устройством, состоящим из сплава хромеля и алюминия. Эти термопары могут определить температуру в диапазоне от -200 °C до +1350 °C. Приборы используются в схемах, расположенных в неокисляющих и инертных условиях без признаков старения. При применении устройств в довольно кислой среде хромель быстро разъедается и приходит в негодность для измерения температуры термопарой.
  • Тип M — представляет сплавы никеля с молибденом или кобальтом. Устройства могут выдерживать до 1400 °C и применяются в установках, работающих по принципу вакуумных печей.
  • Вид N — нихросил-нисиловые устройства, отличием которых считается устойчивость к окислению. Используются они для измерения температур в диапазоне от -270 до +1300 °C.

Существуют термопары, выполненные из сплавов родия и платины. Относятся они к типам B, S, R и считаются самыми стабильными устройствами. К минусам этих преобразователей относится высокая цена и низкая чувствительность.

При высоких температурах широко используются устройства из сплавов рения и вольфрама. Кроме того, по назначению и условиям эксплуатации термопары могут бывать погружаемыми и поверхностными.

По конструкции крепления устройства обладают статическим и подвижным штуцером или фланцем. Широкое применение термоэлектрические преобразователи нашли в устройстве компьютеров, которые обычно подсоединяются через COM порт и предназначены для измерения температуры внутри корпуса.

Читайте также:  Как лудить провода: пошаговая инструкция

Компенсационные провода

Термопары: устройство и принцип работы простым языком, типы

Кроме того, не всегда прибор, на который поступают данные, можно расположить недалеко от датчиков. Поэтому часто требуется подсоединение измерительного прибора на расстоянии от места, где установлены датчики. Эту задачу с успехом решают компенсационные провода. Обычно их изготавливают из того же материала, что и термоэлектрические датчики.

Удлинительные провода находятся на участках с более низкими температурами, поэтому существует возможность изготавливать их из более дешевого материала. При использовании компенсационных проводов необходимо учитывать возможность появления паразитных электродвижущих сил. Провода должны обеспечить отведение свободных концов от термопары в зону с пониженной и постоянной температурой.

Источники погрешностей измерений

Термопары: устройство и принцип работы простым языком, типы

Это явление называется термоэлектрической нестабильностью используемых сплавов. В процессе эксплуатации стало известно, что сплавы электродов изменяют свою ЭДС, которая приводит к искажению показаний.

Во время длительной эксплуатации при высоких температурах такие ошибки могут достигать больших величин, что приводит к снижению точности измерений.

Основными причинами нестабильности измерений считаются:

  • взаимодействие термоэлектродов с внешней средой;
  • влияние на датчики изолирующих и защитных устройств;
  • взаимодействие электродов друг с другом;
  • внутренние процессы, которые возникают при изменении температуры;
  • влияние радиации, электромагнитных полей и перепадов давления.

Под воздействием высокой температуры происходит снижение сопротивления изоляции датчиков, которое приводит к искажению измерений.

Часто источником возникновения ошибок при замерах становится неправильный выбор термоэлектрода, так как его сопротивление не совпадает с показаниями электрической цепи.

Изменение электродвижущей силы по длине термоэлектрического преобразователя тоже приводит к возникновению ошибок при получении показателей.

Источник: https://rusenergetics.ru/praktika/ustrojstvo-termopary

Термопары. Виды и состав. Устройство и принцип действия

Преобразователь температуры в электрический ток называется термопарой. Такой термоэлемент используется в преобразовательных и измерительных устройствах, а также во многих системах автоматики. Если рассматривать термопары по международным стандартам, то это два проводника из разных материалов.

Устройство

На одном конце эти проводники соединены между собой для создания термоэлектрического эффекта, позволяющего измерять температуру.

Внешне такое устройство выглядит в виде двух тонких проволочек сваренных на одном конце между собой, образуя маленький шарик.

Многие китайские мультиметры имеют в комплекте такие термопреобразователи, что дает возможность измерять температуру разных нагретых элементов устройств. Эти два проводника обычно помещены в стекловолоконную прозрачную трубку.

С одной стороны находится аккуратный сварной шарик, а с другой специальные разъемы для подключения к измерительному прибору.

Промышленное оборудование имеет более сложную конструкцию, по сравнению с китайскими термопарами. Рабочий элемент термодатчика заключают в металлический корпус в виде зонда, внутри которого он изолирован керамическими изоляторами, способными выдержать высокую температуру и воздействие агрессивной среды. На производстве таким термодатчиком измеряют температуру в технологических процессах.

Термопары являются наиболее популярным старым термоэлементом, который применяется в различных приборах для измерения температуры. Он обладает высокой надежностью, низкой инертностью, универсален и имеет низкую стоимость.

Диапазон измерения различными видами термопар очень широк, и находится в пределах -250 +2500°С.

Конструктивные особенности термодатчика не позволяют обеспечить высокую точность измерений, и погрешность может составлять до 2 градусов.

В бытовых условиях термопары используются в паяльниках, газовых духовках и других бытовых устройствах.

Принцип действия

Работа рассматриваемого термодатчика заключается в использовании эффекта ученого физика Зеебека, который обнаружил, что при спайке двух разнородных проводов в них образуется термо ЭДС, величина которого возрастает с увеличением нагрева места спайки. Позже это явление назвали термоэлектрическим эффектом Зеебека.

Напряжение, вырабатываемое термопарой, зависит от степени нагревания и вида применяемых металлов. Величина напряжения небольшая, и находится в интервале 1-70 микровольт на один градус.

При подключении такого температурного датчика к измерительному устройству, возникает дополнительный термоэлектрический переход. Поэтому образуется два перехода в разных режимах температуры. Входящий электрический сигнал на измерительном приборе будет зависеть от разности температур двух переходов.

Для измерения абсолютной температуры используют способ, называемый компенсацией холодного спая. Суть этого способа заключается в помещении второго перехода, не находящегося в зоне измерения, в среду образцовой температуры. Раньше для этого применяли обычный способ – размещали второй переход в тающий лед.

Сегодня для этого используют вспомогательный температурный датчик, находящийся рядом со вторым переходом. По данным дополнительного термодатчика измерительное устройство корректирует итоги измерения.

Это упрощает схему измерения, так как измерительный элемент и термопару совместно с дополнительным компенсатором можно соединить в одно устройство.

Разновидности

Температурные датчики на основе термопары разделяются по типу применяемых металлов.

Термопары из неблагородных металлов

Железо-константановые

  • Достоинством стала низкая стоимость.
  • Нельзя применять при температуре менее ноля градусов, так как на металлическом выводе влага создает коррозию.
  • После термического старения показатели измерений возрастают.
  • Наибольшая допустимая температура использования +500°С, при более высокой температуре выводы очень быстро окисляются и разрушаются.
  • Железо-константановый вид является наиболее подходящим для вакуумной среды.

Хромель-константановые

  • Способны работать при пониженных температурах.
  • Материалы электродов обладают термоэлектрической однородностью.
  • Их достоинство – повышенная чувствительность.

Медно-константановые термопары

  • Оба электрода отожжены для создания термоэлектрической однородности.
  • Не восприимчивы к высокой влажности.
  • Нецелесообразно применять при температурах, превышающих 400°С.
  • Допускается применение в среде с недостатком или избытком кислорода.
  • Допускается применение при температуре ниже 0°С.

Хромель-алюмелевые термопары

  • Серная среда вредно влияет на оба электрода термодатчика.
  • Нецелесообразно применять в среде вакуума, так как из электрода Ni-Cr может выделяться хром. Это явление называют миграцией. При этом термодатчик изменяет ЭДС и выдает температуру ниже истинной.
  • Снижение показаний после термического старения.
  • Применяется в насыщенной кислородом атмосфере или в нейтральной среде.
  • В интервале 200-500°С появляется эффект гистерезиса. Это означает, что при охлаждении и нагревании показания отличаются. Разница может достигать 5°С.
  • Широко применяются в разных сферах в интервале от -100 до +1000 градусов. Этот диапазон зависит от диаметра электродов.

Нихросил-нисиловые

  • Наиболее высокая точность работы из всех термопар, изготовленных из неблагородных металлов.
  • Повышенная стабильность функционирования при температурах 200-500°С. Гистерезис у таких термодатчиков значительно меньше, чем у хромель-алюмелевых датчиков.
  • Допускается работа в течение короткого времени при температуре 1250°С.
  • Рекомендуемая температура эксплуатации не превышает 1200°С, и зависит от диаметра электродов.
  • Этот тип термопары разработан недавно, на основе хромель-алюмелевых термодатчиков, которые могут быстро загрязняться различными примесями при повышенных температурах. Если спаять два электрода с кремнием, то можно заранее искусственно загрязнить датчик. Это позволит уменьшить риск будущего загрязнения при работе.

Термодатчики из благородных металлов

Платинородий-платиновые

  • Наибольшая рекомендуемая температура эксплуатации 1350°С.
  • Допускается кратковременное использование при 1600°С.
  • Нецелесообразно использовать при температуре менее 400°С, так как ЭДС будет нелинейной и незначительной.
  • При температуре более 1000°С термопара склонна к загрязнению кремнием, содержащимся в керамических изоляторах. Поэтому рекомендуется применять керамические трубки из чистого оксида алюминия.
  • Способны работать в окислительной внешней среде.
  • Если температура работы более 900°С, то такие термодатчики загрязняются железом, медью, углеродом и водородом, поэтому их запрещается армировать стальными трубками, либо необходимо изолировать электроды керамикой с газонепроницаемыми свойствами.

Платинородий-платинородиевые

  • Оптимальная наибольшая рабочая температура 1500°С.
  • Нецелесообразно использование при температуре менее 600°С, где ЭДС нелинейная и незначительная.
  • Допускается кратковременное использование при 1750°С.
  • Может применяться в окислительной внешней среде.
  • При температуре 1000 и более градусов термопара загрязняется кремнием, поэтому рекомендуется применять керамические трубки из чистого оксида алюминия.
  • Загрязнение железом, медью и кремнием ниже, по сравнению с предыдущими видами.

Преимущества

  1. Прочность и надежность конструкции.
  2. Простой процесс изготовления.
  3. Спай датчика можно заземлять или соединять с объектом измерения.
  4. Широкий интервал эксплуатационных температур, что позволяет считать термоэлектрические датчики наиболее высокотемпературными из контактных видов.

Недостатки

  • Материал электродов реагирует на химические вещества, и при плохой герметичности корпуса датчика, его работа зависит от атмосферы и агрессивных сред.
  • Градуировочная характеристика изменяется из-за коррозии и появления термоэлектрической неоднородности.
  • Требуется проверять температуру холодных спаев. В новых устройствах измерительных приборов на базе термодатчиков применяется измерение холодных спаев полупроводниковым сенсором или термистором.
  • На большой длине удлинительных и термопарных проводников может появляться эффект «антенны» для имеющихся электромагнитных полей.
  • ЭДС зависит от температуры по нелинейному графику, что затрудняет проектирование вторичных преобразователей сигнала.
  • Если серьезные требования предъявляются к времени термической инерции термодатчика, и требуется заземлять спай, то необходимо изолировать преобразователь сигнала, чтобы не было утечки тока в землю.

Рекомендации по эксплуатации

Точность и целостность системы измерений на основе термопарного датчика может быть увеличена, если соблюдать определенные условия:

  • Не допускать вибраций и механических натяжений термопарных проводников.
  • При применении миниатюрной термопары из тонкой проволоки. Необходимо применять ее только в контролируемом месте, а за этим местом следует применять удлинительные проводники.
  • Рекомендуется применять проволоку большого диаметра, не изменяющую температуру измеряемого объекта.
  • Использовать термодатчик только в интервале рабочих температур.
  • Избегать резких перепадов температуры по длине термодатчика.
  • При работе с длинными термодатчиками и удлинительными проводниками, необходимо соединить экран вольтметра с экраном провода.
  • Для вспомогательного контроля и температурной диагностики используют специальные температурные датчики с 4-мя термоэлектродами, позволяющими выполнять вспомогательные температурные измерения, сопротивления, напряжения, помех для проверки надежности и целостности термопар.
  • Проводить электронную запись событий и постоянно контролировать величину сопротивления термоэлектродов.
  • Применять удлиняющие проводники в рабочем интервале и при наименьших перепадах температур.
  • Применять качественный защитный чехол для защиты термопарных проводников от вредных условий.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/termopary/

Ссылка на основную публикацию
Adblock
detector