Можно ли подключать узип только к фазе и нулю?

Импульсные   перенапряжения   в   электрических   сетях   —   не   редкость. Возникают они при прямых или близких ударах молний, из-за переключений в высоковольтных сетях, а также из-за различных аварийных процессов. При этом особой опасности подвергаются частные домовладения, которые получают питание по воздушной линии электропередачи (ВЛ).

Можно ли подключать УЗИП только к фазе и нулю?

Молния   —   это   электрический   разряд   атмосферного   происхождения, который развивается между грозовым облаком и землей или между грозовыми облаками. Считается, что ток прямого удара молнии, составляет примерно 100 тысяч Ампер, а напряжение до 1 миллиарда Вольт. Форма импульса перенапряжения при ударе молнии показана на рисунке ниже.

Можно ли подключать УЗИП только к фазе и нулю?

Очевидно, что воздействие напряжения в десятки тысяч вольт на электроприборы, рассчитанные на 220В приведет как минимум к выходу их из строя, а чаще — к их возгоранию.

Можно ли подключать УЗИП только к фазе и нулю?

Когда нужно применять УЗИП

Защита зданий и сооружений от возгораний при прямом попадании молнии осуществляется молниеотводами. Для жилых зданий он представляет собой сваренную сетку из стали диаметром 8 мм на плоской кровле, с шагом ячейки 15х15 или трос, протянутый на коньке кровли, если она скатного типа.

Можно ли подключать УЗИП только к фазе и нулю?

Защита техники и электропроводки от воздействий молнии осуществляется специальными аппаратами — устройствами защиты от импульсных перенапряжений.

Применение УЗИП при вводе в здание воздушной линией является обязательным. Такое требование предъявляет ПУЭ п.7.1.22.

УЗИП могут выглядеть как модули, устанавливаемые на DIN-рейку, или как устройства, встраиваемые в вилки или розетки.

Можно ли подключать УЗИП только к фазе и нулю?Можно ли подключать УЗИП только к фазе и нулю?

Стоит отметить, что автоматические выключатели и АВДТ не защищают электрооборудование от импульсных перенапряжений и реагируют только на ток КЗ, перегрузки или утечки на землю.

В случае питания дома по КЛ (кабельной линии), что характерно для многоэтажных домов, удар молнии в питающую сеть невозможен.

Однако молния способна навести напряжение на больших расстояниях от места удара в землю с формой импульса 8/20 мкс, что менее опасно, но все равно способствует ускоренному старению изоляции электрооборудования. Поэтому применение УЗИП в кабельных сетях является рекомендуемым.

Функции УЗИП

УЗИП используется для защиты электрооборудования от коротких импульсов перенапряжения с фронтом волны 10/350 и 8/20 мкс (Т1/Т2), снижая напряжение до допустимых величин.

Можно ли подключать УЗИП только к фазе и нулю? Можно ли подключать УЗИП только к фазе и нулю?

Т1 в дроби означает время, за которое импульс достигнет максимального значения в микросекундах. Т2 — время, за которое напряжение импульса снизится до половины от максимального значения. Естественно, что форма волны 10/350 мкс является более опасной, так как перенапряжение дольше воздействует на изоляцию электроустановок, вызывая ее ускоренное старение.

Конструкция и принцип работы УЗИП

УЗИП изготавливаются из оксидно-цинковых варисторов, разрядников или их комбинации. 90% стоимости УЗИП составляют именно эти элементы. В дешевых УЗИП варисторы имеют очень маленькие разрядные токи и часто выходит из строя.

Можно ли подключать УЗИП только к фазе и нулю?

Варисторы — это резисторы с нелинейным сопротивлением. В нормальном режиме сети варисторы имеют бесконечно большое сопротивление, через них ток не течет. При превышении напряжения, сопротивление варистора плавно падает, УЗИП пропускает через себя энергию перенапряжения.

Разрядники представляют собой трубку, наполненную инертным газом, с двумя или тремя электродами. При достижении напряжения определенного значения наступает пробой газового промежутка и срабатывание разрядника.

Разрядники срабатывают медленнее, чем варисторы, поэтому их устанавливают между N и PE проводами на малые значения пробивного напряжения, так как в нормальном режиме напряжение между N и PE вовсе отсутствует.

УЗИП может пропустить через себя определенный ток без разрушения конструкции. Эти параметры называются:

  • импульсный ток (если УЗИП рассчитан на форму импульса 10/350 — класс I)
  • максимальный ток разряда (при форме импульса  8/20 — класс II)

Правильно выбрать эти параметры могут помочь специалисты техподдержки. В большинстве случаев типовым считается ток 12,5 кА для УЗИП класса I и 40 кА для класса II.

Классификация УЗИП

УЗИП делятся на три категории, в зависимости от класса испытания, а соответственно и места установки в сети — I, II, III. Согласно «Зоновой концепции» для полноценной защиты от перенапряжений следует устанавливать УЗИП разных классов каскадно, на стыке зон защиты:

Можно ли подключать УЗИП только к фазе и нулю?

1) В щите учета на опоре или на доме (снаружи) до счетчика следует устанавливать УЗИП класса I. Это устройство рассчитано на поглощение импульсов перенапряжения с формой волны 10/350 мкс и защищает от прямых ударов молнии в линию электропередачи или систему молниезащиты дома.

2) В распределительном щитке дома должен быть установлен УЗИП класса II. В функции этого аппарата будет входить гашение остаточного импульса, который прошел через УЗИП класса I, а также защита от перенапряжений, вызванных коммутацией в высоковольтных сетях.

  • 3) В розетках, к которым подключается высокочувствительная цифровая техника, встраивается УЗИП класса III, которое будет выполнять функцию фильтрации высокочастотных помех.
  • При этом стоит иметь в виду, что между разными классами УЗИП должно выдерживаться расстояние не менее 15 метров кабеля, либо должен быть установлен специальный разделительный дроссель, иначе самая «слабая» ступень защиты примет на себя максимальную энергию импульса и выйдет из строя.
  • Исполнения УЗИП
  • УЗИП подключаются параллельно защищаемого оборудования и представляют собой корпус со сменными модулями или монолитную конструкцию.

В зависимости от системы заземления, принятой  на объекте, УЗИП нужно подключать по разному. Самыми распространенными в жилом секторе являются системы TN-C, TN-S и TT.

Система заземления TN-C

  • однофазная — варистор между L-N
  • трехфазная — варисторы между L1…L3-PEN

Система заземления TN-S

  • однофазная — варистор между L-PE, варистор между N-PE
  • трехфазная — варистор между L1…L3-PE, варистор между N-PE

Система заземления TТ

  • однофазная — варистор между L-N, разрядник между N-PE
  • трехфазная — варистор между L1…L3-N, разрядник между N-PE

Защита УЗИП

Несмотря на то, что УЗИП является устройством защиты электросети, оно само должно быть защищено от повреждений, которое может возникнуть из-за разрушения элементов конструкции в момент поглощения энергии перенапряжения. Нередко бывали случаи, когда из-за неграмотной защиты, УЗИП сами становились причиной возгораний.

  • Класс I должен быть защищен предохранителями на ток до 160А
  • Класс II должен быть защищен предохранителями на ток до 125А

Если ток предохранителя больше указанного, то должен быть установлен дополнительный предохранитель, защищающий оборудование щита от разрушения УЗИП.

В случае воздействия длительного перенапряжения на УЗИП, варисторы начнут пропускать ток и сильно нагреваться. Встроенный терморасцепитель отключает устройство от сети в случае, если температура варистора достигнет критического значения.

Допускается защищать УЗИП автоматическими выключателями с предельной коммутационной способностью (ПКС) не менее 6кА. Но устройства I может быть защищены только предохранителями, так как они могут отключить намного большие токи КЗ при воздействии повышенного напряжения. Например, предохранитель на рисунке имеет отключающую способность 50 кА.

  1. Таким образом, правильное применение устройств защиты от импульсных перенапряжений позволит эффективно защитить электрооборудование от повреждений, вызванных перенапряжениями в сети.
  2. Перейти в каталог

Источник: https://KEAZ.ru/company/press-center/blog/2015/776-nujno-li-vam-ustroystvo-dlya-zaschiti-ot-impulsnih-perenapryajeniy

Как защитить дом от импульсных перенапряжений

  • 26 марта 2019 г. в 09:00
  • 1738

В техподдержке интернет-магазина «АСберг АС» клиенты часто задают вопросы о том как защитить дом от перепадов напряжения, что такое устройства защиты от перенапряжения, какие они бывают и как их подбирать.

Класс продукции УЗИП известен покупателям значительно меньше чем автоматические выключатели или УЗО и игнорирование защиты от перенапряжения часто служит причиной пожаров и выхода из строя дорогостоящего электронного оборудования в частных домах.

Хотелось бы восполнить этот пробел в знаниях покупателей и рассказать более подробно о том, что такое УЗИП, для чего он нужен и как его подобрать.

УЗИП: особенности выбора и применения

Даже кратковременные импульсные броски напряжения, в несколько раз превышающие номинальное, могут нанести непоправимый ущерб дорогостоящей электротехнике и электронике, а то и стать причиной пожара.

Перенапряжение в сетях может возникать из-за грозы, аварий или переходных процессов.

Например, импульсные перенапряжения могут стать следствием попадания молнии в систему молниезащиты или линию электропередач, переключения мощных индуктивных потребителей, таких как электродвигатели и трансформаторы, коротких замыканий.

Что такое УЗИП и для чего оно нужно?

Можно ли подключать УЗИП только к фазе и нулю? Широкое распространение получили УЗИП с быстросъемным креплением для установки на DIN-рейку

Ограничитель перенапряжения в электроустановках напряжением до 1 кВ называют устройством защиты от импульсных перенапряжений — УЗИП. Устройства защиты от импульсных перенапряжений — как раз и призваны защитить электрооборудование от подобных ситуаций. Они служат для ограничения переходных перенапряжений и отвода импульсов тока на землю, снижения амплитуды перенапряжения до уровня, безопасного для электрических установок и оборудования. УЗИП применяются как в гражданском строительстве, так и на промышленных объектах.

Основной российский документ, определяющий, что такое УЗИП, это ГОСТ Р 51992-2002, «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах».

УЗИП призваны обеспечить защиту от ударов молнии в систему молниезащиты здания (объекта) или воздушную линию электропередач (ЛЭП), защитить высокочувствительное оборудование и технику от импульсных перенапряжений и коммутационных бросков питания. Широкое распространение получили УЗИП с быстросъемным креплением для установки на DIN-рейку.

Аппараты защиты от импульсных напряжений включают в себя устройства нескольких категорий:

Тип устройства Для чего предназначено Где применяется
I класс Для защиты от непосредственного воздействия грозового разряда. Защищают от импульсов 10/350 мкс: попадание молнии в систему внешней молниезащиты и попадание молнии в линию электропередач вблизи объекта. Амплитуда импульсных токов с крутизной фронта волны 10/350 мкс находится в пределах 25-100 кА, длительность фронта волны достигает 350 мкс. Устанавливаются на вводе питающей сети в здание (ВРУ/ГРЩ). Данными устройствами должны укомплектовываться вводно- распределительные устройства административных и промышленных зданий и жилых многоквартирных домов.
II класс Обеспечивают защиту от перенапряжений, вызванных коммутационными процессами, а также выполняющие функции дополнительной молниезащиты. Предназначены для защиты от импульсов 8/20 мкс. Они защищают от ударов молнии в ЛЭП, от переключений в системе электроснабжения. Амплитуда токов — 15-20 кА. Монтируются и подключаются к сети в распределительных щитах. Служат дополнительной защитой от импульсов, которые не были полностью нейтрализованы УЗИП I класса.
III класс Для защиты от импульсных перенапряжений, вызванных остаточными бросками напряжений и несимметричным распределением напряжения между фазой и нейтралью. Также работают в качестве фильтров высокочастотных помех. Предназначены для защиты от остаточных импульсов 1,2/50 мкс и 8/20 мкс импульсов после УЗИП I и II классов. Используются для защиты чувствительного электронного оборудования, поблизости от которого и устанавливаются. Характерные области применения — ИТ- и медицинское оборудование. Также актуальны для частного дома или квартиры — подключаются и устанавливаются непосредственно у потребителей.
Читайте также:  Практика применения сборных шин в eplan, их размещение и запись в базе данных

Конструкция УЗИП постоянно совершенствуется, повышается их надежность, снижаются требования по техническому обслуживанию и контролю.

Как работает УЗИП?

УЗИП устраняет перенапряжения:

  • Несимметричный (синфазный) режим: фаза — земля и нейтраль — земля.
  • Симметричный (дифференциальный) режим: фаза — фаза или фаза — нейтраль.

В несимметричном режиме при превышении напряжением пороговой величины устройство защиты отводит энергию на землю. В симметричном режиме отводимая энергия направляется на другой активный проводник.

Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S. В системе заземления TN-C применяется трехполюсное УЗИП. В нем нет контакта для подключения нулевого проводника.

Можно ли подключать УЗИП только к фазе и нулю? Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S. В системе заземления TN-C применяется трехполюсное УЗИП.

В нем нет контакта для подключения нулевого проводника

В разрядниках при воздействии грозового разряда в результате перенапряжения пробивает воздушный зазор в перемычке, соединяющей фазы с заземляющим контуром, и импульс высокого напряжения уходит в землю. В вентильных разрядниках гашение высоковольтного импульса в цепи с искровым промежутком происходит на резисторе.

УЗИП на основе газонаполненных разрядников рекомендуется к применению в зданиях с внешней системой молниезащиты или снабжаемых электроэнергией по воздушным линиям.

В варисторных устройствах варистор подключается параллельно с защищаемым оборудованием.

При отсутствии импульсных напряжений, ток, проходящий через варистор очень мал (близок к нулю), но как только возникает перенапряжение, сопротивление варистора резко падает, и он пропускает его, рассеивая поглощенную энергию. Это приводит к снижению напряжения до номинала, и варистор возвращается в непроводящий режим.

УЗИП имеет встроенную тепловую защиту, которая обеспечивает защиту от выгорания в конце срока службы. Но со временем, после нескольких срабатываний, варисторное устройство защиты от перенапряжений становится проводящим. Индикатор информирует о завершении срока службы. Некоторые УЗИП предусматривают дистанционную индикацию.

Как выбрать УЗИП?

При проектировании защиты от перенапряжений в сетях до 1 кВ, как правило, предусматривают три уровня защиты, каждая из которых рассчитана на определенный уровень импульсных токов и форму фронта волны. На вводе устанавливаются разрядники (УЗИП класса I), обеспечивающие молниезащиту.

Следующее защитное устройство класса II подключается в распределительном щите дома. Оно должно снижать перенапряжения до уровня, безопасного для бытовых приборов и электросети. В непосредственной близости от оборудования, чувствительного к броскам в сети, можно подключить УЗИП класса III.

Предпочтительнее использовать УЗИП одного вендора.

Для координации работы ступеней защиты устройства должны располагаться на определенном расстоянии друг от друга — более 10 метров по питающему кабелю. При меньших дистанциях требуется включение дросселя, возмещающего недостающие активно-индуктивные сопротивления проводов. Также рекомендуется защищать УЗИП с помощью плавких вставок.

При каскадной защите требуется минимальный интервал 10 м между устройствами защиты.

Можно ли подключать УЗИП только к фазе и нулю? При каскадной защите требуется минимальный интервал 10 м между устройствами защиты

Классы УЗИП не являются унифицированными и зависят от конкретной страны. Каждая строительная организация может ссылаться на один из трех классов испытаний. Европейский стандарт EN 61643-11 включает определенные требования по стандарту МЭК 61643-1. На основе МЭК 61643 создан российский ГОСТ Р 51992.

Можно ли подключать УЗИП только к фазе и нулю? Оценка значимости защищаемого оборудования

Необходимость защиты, экономические преимущества устройств защиты и соответствующие устройства защиты должны определяться с учетом факторов риска: соответствующие нормы прописаны в МЭК 62305-2. Критерии проектирования, монтажа и техобслуживания учитываются для трех отдельных групп:

Группа Что включаетГде определяется
Первая Меры защиты для минимизации риска ущерба имуществу и вреда здоровью людей МЭК 62305-3
Вторая Меры защиты для минимизации отказов электрических и электронных систем МЭК 62305-4
Третья Меры защиты для минимизации риска ущерба имуществу и отказов инженерных сетей (в основном электрические и телекоммуникационные линии) МЭК 62305-5

Можно ли подключать УЗИП только к фазе и нулю? Оценка риска воздействия на объект

Нормы установки молниезащитных разрядников прописаны в международном стандарте МЭК 61643-12 (принципы выбора и применения). Несколько полезных разделов содержит международный стандарт МЭК 60364 (электроустановки зданий):

  • МЭК 60364-4-443 (защита для обеспечения безопасности). Если установка запитывается от воздушной линии или включает в себя такую линию, должно предусматриваться устройство защиты от атмосферных перенапряжений, если грозовой уровень для рассматриваемого объекта соответствует классу внешних воздействий AQ 1 (более 25 дней с грозами в год).
  • МЭК 60364-4-443-4 (выбор оборудования установки). Этот раздел помогает в выборе уровня защиты для разрядника в зависимости от защищаемых нагрузок. Номинальное остаточное напряжение устройств защиты не должно превышать выдерживаемого импульсного напряжения категории II.

Можно ли подключать УЗИП только к фазе и нулю? Выбор оборудования по МЭК 6036

В качестве первой ступени лучше применять УЗИП на базе разрядников без съемного модуля. Вряд ли вам удастся найти варисторное устройство с номинальным током Iimp более 20 кА. Шкаф, в котором установлено УЗИП такого типа, должен быть из несгораемого материала.

Важнейшим параметром, характеризующим УЗИП, является уровень напряжения защиты Up. Он не должен превышать стойкость электрооборудования к импульсному напряжению. Для УЗИП I-го класса Up не превышает 4 кВ. Уровень напряжения защиты Up для устройств II-го класса не должен превышать 2,5 кВ, для III-го класса — 1,5 кВ.

Это тот уровень, который должна выдерживать техника. Ещё несколько важных параметров, которые необходимо знать для выбора УЗИП. Максимальное длительное рабочее напряжение Uc — действующее значение переменного или постоянного тока, которое длительно подаётся на УЗИП.

Оно равно номинальному напряжению с учетом возможного завышения напряжения в электросети.

Можно ли подключать УЗИП только к фазе и нулю? Минимальное требуемое значение Uc для УЗИП в зависимости от системы заземления сети

Номинальный ток нагрузки IL — максимальный длительный переменный (действующее значение) или постоянный ток, который может подаваться к нагрузке. Этот параметр важен для УЗИП, подключаемых в сеть последовательно с защищаемым оборудованием. УЗИП обычно подключаются параллельно цепи, поэтому данный параметр у них не указывается.

Можно ли подключать УЗИП только к фазе и нулю? Выбор защитной аппаратуры: чувствительное оборудование и оборудование здания Можно ли подключать УЗИП только к фазе и нулю? Выбор защитной аппаратуры: бытовая техника и электроника Можно ли подключать УЗИП только к фазе и нулю? Выбор защитной аппаратуры: производственное оборудование Выбор защитной аппаратуры: ответственное оборудование

Сегодня многие крупные потребители электрической энергии с успехом используют на территории России высококачественные элементы УЗИП. Положительные результаты испытаний и эффективность применения УЗИП в России позволяют говорить о том, что их использование в российских условиях выгодно и удобно. Остается подобрать нужную модель устройства и установить ее на объекте.

Источник: Компания «АСберг АС»

Источник: https://www.elec.ru/articles/kak-zashitit-dom-ot-impulsnyh-perenapryazhenij/

Сборка щита учета с УЗИП и УЗО, заземление TN-C-S

Использование в щите учета частного дома Устройства Защиты от Импульсных Перенапряжений — УЗИП, позволяет значительно обезопасить жилище. Защитить электрооборудование, предотвратить возможное возникновение пожара.

В отличии от многоквартирного, частный дом значительно чаще страдает от воздействий кратковременных высоких напряжений. Например, при ударе молнии, коротком замыкании или включении в сеть мощных потребителей. Именно для таких случаев и используется УЗИП, оно не пропускает высокое напряжение, переводя его на контур заземления.

Из-за своего принципа работы или возможного брака оборудования, при сработке УЗИП – при улавливании высокого напряжения, оно разрушится, нередко его просто разрывает.

При этом, как и при взрыве, выделяется тепло, летят искры. Случись это внутри помещения, например, в распределительном щитке (РЩ), вероятность возникновения пожара очень велика. А если это произойдёт в щите учета, установленном на улице, за пределами жилища, большая вероятность потерять лишь электрощит, избежав серьезных последствий.

Ранее, мы уже рассмотрели все основные схемы монтажа учетных электрощитов 380В, для выделенной мощности 15кВт, в том числе и с УЗИП. При этом, для разных заземлений, подключения отличаются.

  • В этой статье, мы рассмотрим сборку щита учета электрической энергии частного дома с УЗИП и УЗО, при заземлении TN-C-S.
  • Вариант для системы ТТ – смотрите ЗДЕСЬ.
  • Сейчас же перейдём к самой схеме:

 

Щит учета частного дома с УЗИП при системе заземления TN-C-S

Можно ли подключать УЗИП только к фазе и нулю?

Чаще всего защиту от импульсных перенапряжений разумнее всего подключать сразу после вводного автомата, параллельно остальной нагрузке.

Мы рассмотрим пошаговую схему сборки такой схемы электрощита, где, для обеспечения максимальной защиты дома, используется и УЗИП и селективное противопожарное Устройство Защитного Отключения.

1. В первую очередь в электрощит устанавливается всё модульное оборудование.

  1. Важно при этом не забыть, что всё, что стоит до счетчика электрической энергии, обязательно необходимо защитить от возможности несанкционированного подсоединения и кражи электроэнергии.
  2. Обычно для этого монтируется пластиковый бокс, который имеет возможность пломбировки.
  3. Именно в него устанавливается и вводной автоматический выключатель и Устройство защиты от импульсных перенапряжений

Можно ли подключать УЗИП только к фазе и нулю?

  • В данной сборке используется:
  • 1) Стальной электрический щит (степень защиты ip54 или выше)
  • 2) Бокс/кожух для установки вводного АВ на 3 модуля
  • 3) Автоматический выключатель трехполюсный 25А
  • 4) Трехфазный счетчик электрической энергии 380В
  • 5) распределительный блок на DIN-рейку
  • 6) Селективное УЗО от 40А, ток утечки 100мА или 300мА
  • 7) Бокс/кожух для установки вводного АВ на 4 модуля (в зависимости от типа УЗИП)
  • 8) Устройство Защиты от Импульсных Перенапряжений — УЗИП

Разводка проводов внутри щита и их подключение

Вводные проводники – СИП

В первую очередь подключаются провода с большим сечением, в нашем случае это ввод — СИП 4 х 16мм.кв.

Для системы TN-C-S они должны подсоединяться в следующем порядке:

Читайте также:  Как перенести розетку своими руками в другое место?

Можно ли подключать УЗИП только к фазе и нулю?

Фазные проводники – с желтой, зеленой и красной полосой, к верхним контактам главного автомата, а провод с синей маркировкой – PEN, к распределительному блоку.

Соединение контура заземления с УЗИП при TN-C-S

Следующим шагом подключаем все защитные заземления. Провод идущий от контура дома 1х10мм.кв. заводится в распределительный блок. Затем от него, такой же провод прокладывается до соответствующей клеммы Устройства защиты от перенапряжений, со знаком заземления. А также заземляется корпус щита как показано на изображении ниже:

Можно ли подключать УЗИП только к фазе и нулю?

Соединение вводного автомата со счётчиком электрической энергии

Теперь можно соединять вводной автоматический выключатель и электросчётчик. Для этого три фазы, пробрасываются до соответствующих клемм счётчика. Схема и порядок подсоединения для трехфазного счётчика – подробно рассмотрена нами ранее ЗДЕСЬ.

Ноль прокинут до распределительного блока.

Можно ли подключать УЗИП только к фазе и нулю?

  1. Подключение УЗИП в щите учета
  2. От нижних клемм главного автоматического выключателя, где уже есть провода, идущие в счетчик, прокладываются фазные проводники к контактам устройства защиты от импульсных перенапряжений.
  3. Нулевой проводник к клемме «N», подводится от распределительного блока. Как показано на изображении ниже:

Можно ли подключать УЗИП только к фазе и нулю?

  • Далее соединяется противопожарное селективное УЗО, с выводными клеммами электросчётчика.
  • При этом задействовано 4 провода — фазы и ноль.
  • Важно запомнить, что после УЗО соединять где-то в схеме НОЛЬ и ЗАЗЕМЛЕНИЕ уже нельзя.

Можно ли подключать УЗИП только к фазе и нулю?

Кабель идущий в Распределительный щиток дома

Финальный шаг – к нижним контактам Устройства Защитного Отключения, подсоединяются жилы кабеля, идущего в РЩ дома.

Можно ли подключать УЗИП только к фазе и нулю?

Фазные и нулевая жила, как показано выше, подсоединяются к УЗО снизу, при этом голубой — ноль, к контакту со маркировкой «N».

А вот заземление – желто-зеленая жила, цепляется к распределительному блоку.

На этом всё, сборка щита учета частного дома с защитой от импульсных перенапряжений – УЗИП, завершена. Теперь можно вызвать представителей энергосбытовой компании, чтобы они опечатали ВРУ и вы смогли им полноценно пользоваться.

Источник: https://RozetkaOnline.ru/podkljuchenie-i-ustanovka/item/221-sborka-shchita-ucheta-s-uzip-i-uzo-zazemlenie-tn-c-s

Как подключить УЗИП — схемы подключения

Во всех схемах электроприборов имеется тонкая электроника, обладающая повышенной чувствительностью на отклонения параметров сети.

Особенно чутко они реагируют на импульсное перенапряжение, возникающее при ударах молнии, а также во время включения мощного оборудования, расположенного поблизости.

Традиционные средства защиты – автоматы и УЗО – не способны защитить от подобных воздействий, поэтому, в последнее время все чаще используется УЗИП, схема подключения которого выбирается исходя из конкретных условий эксплуатации.

Узип как элемент внутренней молниезащиты

Молния относится к стихийным природным явлениям. Ее внезапное действие приводит к сильным разрушениям самого объекта и всей электроники, находящейся внутри помещений. Основные мероприятия по безопасности возлагаются на внешнюю молниезащиту. Это целая система, включающая в себя молниеприемник, расположенный на крыше, соединенный с молниеотводом и заземляющим контуром.

Ток, возникающий в момент разряда, представляет собой кратковременный высоковольтный импульс, легко попадающий в действующую сеть при отсутствии внутренней защиты. Под его влиянием, во всей проводке, расположенной внутри здания, наводятся сильные перенапряжения, сжигающие изоляцию, разрушающие электронику бытовых приборов.

Можно ли подключать УЗИП только к фазе и нулю?

Для предотвращения подобных ситуаций и их тяжелых последствий, предусматриваются схема подключения внутренней молниезащиты. Они оборудуются техническими устройствами и приборами, применяемыми в комплексе. Основой служат модули УЗИП – устройства защиты от импульсных перенапряжений, подключаемые к заземляющим системам, или УЗМ. Внутри здания они выполняют следующие защитные функции:

  • Нейтрализуют последствия грозовых разрядов, попавших непосредственно в дом.
  • Гасят импульсы, образующиеся при попадании молнии в ЛЭП, питающую дом.
  • Предотвращают последствия ударов по высоким деревьям и строениям, расположенным рядом.
  • Те же действия выполняются при попадании молнии в грунт возле дома.

Именно два последних варианта становятся причиной проникновения импульса внутрь здания по заземляющему контуру, водопроводным и канализационным трубам. При наличии внутренней защиты, она мгновенно срабатывает, переводя импульс на варисторы или специальные разрядники, нейтрализующие высокое напряжение.

Как работает защитное устройство УЗИП

Принцип действия УЗИП основывается на использовании специальных элементов – полупроводниковых варисторов. Их сопротивление находится в нелинейной зависимости от прикладываемого напряжения. То есть, когда напряжение возрастет и превысит определенное значение, сопротивление варистора будет резко снижено.

В обычном рабочем режиме напряжение находится в пределах 220 вольт, а сопротивление варистора, установленного в УЗИП или УЗМ, в этот период очень высокое, вплоть до нескольких тысяч Мом. Таким образом, варистор обладает практически нулевой проводимостью и не пропускает через себя электрический ток.

Можно ли подключать УЗИП только к фазе и нулю?

Образование высокого импульса приводит к резкому росту напряжения, приводящего к мгновенному многократному снижению сопротивления варистора, стремящегося к нулю.

В результате, он обретает свойства проводника, через который возможно свободное прохождение электрического тока.

Происходит короткое замыкание электрической цепи на землю, и под его воздействием автоматический выключатель срабатывает и отключает всю цепь.

Вместо варистора схема подключения предусматривает использование различных типов разрядников, но общий принцип работы УЗИП будет одинаково заключаться в нейтрализации и отводе в землю опасных импульсных перенапряжений через ноль и заземление.

Классы защиты УЗИП

Классификация этих защитных устройств производится в соответствии с ГОСТом Р 51992-20111.

Можно ли подключать УЗИП только к фазе и нулю?

ГОСТ определяет следующие классы этих приборов:

  • 1-й класс или «В». Данные устройства защищают от непосредственных воздействий грозовых разрядов, когда удары молний попадают в систему. Они же нейтрализуют атмосферные и коммуникационные перенапряжения. Для монтажа используется схема подключения с ввода на объект, где устанавливаются ГРЩ и ВРУ. Приборы 1-го класса прежде всего применяются для зданий, расположенных отдельно на открытом пространстве или подключенных к воздушным ЛЭП. Другими факторами подключения служат соседние дома, оборудованные молниеотводами или высокие деревья, расположенные рядом. Величина номинального разрядного тока находится в пределах 30-60 кА.
  • 2-й класс или «С». Эти приборы нейтрализуют остатки перенапряжений атмосферного и коммутационного характера, преодолевших защиту 1-го класса. Местом установки, в том числе и для УЗМ, служат обычные вводные щитки квартиры, дома или офиса. Номинал разрядного тока – 20-40 кА.
  • 3-й класс или «D». Защищают электронную аппаратуру от остаточных повышенных напряжений и помех высокой частоты, пропущенных защитой 2-го класса. В качестве примера можно назвать сетевой фильтр, к которому подключается компьютер. Выдерживают разрядный ток от 5 до 10 кА. С использованием устройств всех трех классов создается однолинейная многоступенчатая защита.

Характеристики и маркировка

Каждое защитное устройство того или иного класса обладает индивидуальными параметрами, которые учитываются при подключение УЗИП. Основные технические характеристики наносятся на корпус изделия, а полная информация отражена в паспорте. Выбирая прибор, необходимо в первую очередь обращать внимание на обозначение и следующие показатели:

  • Напряжения номинального и максимального значения, при которых устройство может нормально функционировать в течение установленного времени.
  • Показатель рабочей частоты тока, на которую рассчитывается УЗИП.
  • Величина номинального разрядного тока. Рядом с цифрами указывается форма его волны. Представляет собой токовый импульс с волной 8/20 мс, выраженный в кА, пропускаемый устройством многократно, без каких-либо последствий.
  • Значение максимального разрядного тока, которое защита пропускает однократно, не утрачивая при этом общей работоспособности.
  • Уровень напряжения защиты указывает на возможности устройства по ограничению перенапряжения.

Подключение УЗИП по степени защиты

Можно ли подключать УЗИП только к фазе и нулю?

Для каждого устройства, обладающего индивидуальными защитными свойствами, предусмотрена своя схема подключения УЗИП.

  1. Устройства 1-й степени устанавливаются в щитки серии РВ. Непосредственное подключение осуществляется при помощи трансивера. Средняя величина выходного напряжения составляет 14 вольт. Проводимость может изменяться в соответствии с типом используемых резисторов. Вместе с ними используется усилитель. Пороговая проводимость в среднем равна 4,5 мк. Перед началом подключения нужно проверить показатель общего сопротивления цепи. Он должен составлять 50 Ом. Для других типов щитков эти устройства не подходят из-за высокой токовой проводимости.
  2. Аппараты 2-й степени используются в щитке серии РР. Здесь схема подключения УЗИП обходится без трансиверов и все соединения выполняются только проводниками. Перед подключением также проверяются параметры выходного напряжения на стабилизаторе, которое примерно составляет 13 вольт. В процессе работы задействуются двухконтактные расширители. В щитках РР20 устанавливаются изоляторы, а подключение УЗИП выполняется посредством сеточного триода с операционным усилителем. Щитки РР21 оборудованы интегральными выпрямителями, участвующими в преобразовании тока.
  3. УЗИП 3-й степени предназначены для установки в щитки, оборудованные проходным динистором. Для подключения оборудования применяется демпфер. Соединительные контакты имеют медную обкладку. Общее сопротивление цепи не превышает 40 Ом. В щитках РР19 тиристор устанавливается вместе с усилителем. В некоторых модификациях используются конденсаторные резисторы. Допускается подключение устройства вместе с адаптером.

Подключение различных модификаций

Все УЗИП выпускаются в разных модификациях, что существенно расширяет сферу их использования. С связи с этим, подключение этих устройств осуществляется своим способом в каждом конкретном случае.

Подключение однополюсных устройств можно рассмотреть на примере модификации РН-101М. Этот прибор изготовлен в виде контактного блока и устанавливается в сетях переменного тока. Нередко они используются вместе с трансформаторами, оборудованными высоковольтными реле.

Показатели общего сопротивления для этого аппарата в среднем равны 22 Ом, выходное напряжение – всего около 200 вольт. Конструкция дополнена внутренними контактами и модулятором. Подключение фазы выполняется с помощью трансивера линейного типа.

Во многих моделях устанавливаются тетроды, работающие вместе с преобразователями и выпрямителями.

Можно ли подключать УЗИП только к фазе и нулю?

Пример подключения двухполюсного прибора – модель РН-105М. Эти устройства подключаются в однофазной сети посредством пентодов, при общем сетевом сопротивлении в 40 Ом.

Контакты и динистор в устройстве соединяются напрямую. Многие модели оборудуются компаратором, допускающим установку поворотного регулятора. Проводимость устройства зависит от модулятора.

При интегральном компоненте она составит 2,2 мк, а при дуплексном – 3 мк.

Модели серии АВВ очень часто подключаются в жилых домах. При их установке в щитки серии РР, конденсаторы будут подключаться вместе с расширителем. Модулятор и демпфер в устройствах АББ соединяются между собой. Общее сопротивление цепи равно 40 Ом, показатель проводимости составляет 4 мк.

Особенности подключения защитного оборудования

Перед монтажом УЗИП для частного дома или другого объекта, необходимо выяснить наличие заземляющего контура и его соответствие нормативным требованиям. Рекомендуется пригласить специалистов и замерить следующие параметры:

  • Сопротивление петли фаза-ноль.
  • Сопротивление контура заземления
  • Сопротивление изоляции кабелей и проводов, другие показатели, способные повлиять на работу защитного оборудования.
Читайте также:  Как правильно заряжать автомобильный аккумулятор?

При подключении УЗИП в однофазной сети необходимо учитывать особенности самого здания, его основные функции и все установленное в нем оборудование.

Можно ли подключать УЗИП только к фазе и нулю?

К заземлению дополнительно предъявляются следующие требования:

  • Жилые дома и административные здания. При напряжении 220 или 380 вольт и схеме заземления TN-C-S сопротивление растеканию токов не должно превышать 30 Ом.
  • В молниеотводах этот показатель составляет не выше 10 Ом.
  • Для трансформаторных подстанций – не более 4 Ом.
  • Объекты с оборудование связи – не выше 4 Ом.
  • Воздушные линии связи. В защитной цепи сопротивление растеканию тока не превышает 2 Ом.

В электрических сетях подключение УЗИП осуществляется совместно с плавкими предохранителями, существенно повышающими эффективность защиты.

Отличительной чертой этой схемы является соединение нуля – нейтральной шины, расположенной на входе, с шиной заземляющего контура.

Подключение УЗИП в трехфазной сети выполняется практически также, только в ней задействовано большее количество фазных проводов.

Источник: https://electric-220.ru/news/skhema_podkljuchenija_uzip/2019-10-10-1758

Узип – что это такое, описание и схемы подключения в частном доме

Перенапряжение – это превышение максимального показателя напряжения для той или иной сети.

Под импульсным перенапряжением понимается резкий скачок напряжения между фазой и землей, который занимает долю секунды.

Такой перепад напряжения опасен не только для линии, но и для подключенных к ней электроприборов. Чтобы не допустить подобной ситуации, используется устройство защиты от импульсных перенапряжений.

Можно ли подключать УЗИП только к фазе и нулю?

Что такое УЗИП и для чего оно нужно?

УЗИП – это устройство защиты от импульсных перенапряжений, которое обеспечивает защиту электроустановок до 1 кВ. Устройство защищает от перенапряжений в электросети, а также от грозовых воздействий посредством отвода импульсов тока на землю.

УЗИП применяют только в низковольтных силовых распределительных системах. Данное устройство подходит как для промышленных предприятий, так и для жилых строений.

УЗИП бывает двух типов:

  • ОПС – ограничитель перенапряжений сети;
  • ОИН – ограничитель импульсных напряжений.

Принцип действия и устройство

Можно ли подключать УЗИП только к фазе и нулю?

Принцип работы УЗИП заключается в применении варисторов – нелинейный элемент в виде полупроводникового резистора сопротивления от приложенного напряжения.

УЗИП имеет два вида защиты:

  • Несимметричный (синфазный) – при перенапряжении устройство направляет импульсы на землю (фаза – земля и нейтраль – земля);
  • Симметричный (дифференциальный) – при перенапряжении энергия направляется на другой активный проводник (фаза – фаза или фаза – нейтраль).

Чтобы лучше понять принцип работы УЗИП приведем небольшой пример.

Нормальное напряжение цепи 220 В, а при возникновении импульса в этой самой цепи напряжение резко поднимается, например, при ударе молнии.

При резком скачке напряжения, в УЗИП уменьшается сопротивление, что приводит к короткому замыканию, которое в свою очередь приводит к срабатыванию автоматического выключателя и в последствии к отключению самой цепи.

Таким образом обеспечивается защита электрооборудования от резких перепадов напряжения, не допуская протекания через него импульса высокого напряжения.

Разновидности УЗИП

Можно ли подключать УЗИП только к фазе и нулю?

Устройства защиты от импульсных перенапряжений бывают с одним и двумя вводами, и подразделяются на:

  • Коммутирующие;
  • Ограничивающие;
  • Комбинированные.

Коммутирующие защитные аппараты

Характерной особенностью коммутирующих устройств является высокое сопротивление, которое при возникновении сильного импульса в напряжении мгновенно падает до нуля. Принцип работы коммутирующих устройств основывается на разрядниках.

Ограничители сетевого перенапряжения (ОПН)

Можно ли подключать УЗИП только к фазе и нулю?

Для ограничителя сетевых напряжений также характерно высокое сопротивление. Его отличие от коммутирующего аппарата только в том, что снижение сопротивления происходит постепенно. ОПН основывается на работе варистора (резистора), который используется в его конструкции. Сопротивление варистора находится в нелинейной зависимости от воздействующего на него напряжения. При резком увеличении напряжения происходит также резкое увеличение силы тока, который проходит непосредственно через варистор и таким образом сглаживаются электрические импульсы, после чего ограничитель сетевого напряжения возвращается в первоначальное состояние.

Источник: https://odinelectric.ru/equipment/chto-takoe-uzip-shema-podklucheniya

Узип — устройство защиты от импульсных перенапряжений

  • Устройство защиты от импульсных перенапряжений (УЗИП) — устройство предназначенное для защиты электрической сети и электрооборудования от перенапряжений которые могут быть вызваны прямым или косвенным грозовым воздействием, а так же переходными процессами в самой электросети.
  • Другими словами УЗИПы выполняют следующие функции:

Защита от удара молнии электрической сети и оборудования, т.е. защита от перенапряжений вызванных прямыми или косвенными грозовыми воздействиями

Защита от импульсных перенапряжений вызванных коммутационными переходными процессами в сети, связанных с включением или отключением электрооборудования с большой индуктивной нагрузкой, например силовых или сварочных трансформаторов, мощных электродвигателей и т.д.

Защита от удаленного короткого замыкания (т.е. от перенапряжения возникшего в результате произошедшего короткого замыкания)

УЗИПы имеют различные названия: ограничитель перенапряжений сети — ОПС (ОПН), ограничитель импульсных напряжений — ОИН, но все они имеют одинаковые функции и принцип работы.

Внешний вид УЗИП:

  1. Принцип работы УЗИПа основан на применении нелинейных элементов, в качестве которых, как правило, выступают варисторы.
  2. Варистор — это полупроводниковый резистор сопротивление которого имеет нелинейную зависимость от приложенного напряжения.
  3. Ниже представлен график зависимости сопротивления варистора от приложенного к нему напряжения:

Из графика видно, что при повышении напряжения выше определенного значения сопротивление варистора резко снижается.

Как это работает на практике разберем на примере следующей схемы:

  • На схеме упрощенно представлена однофазная электрическая цепь, в которой через автоматический выключатель подключена нагрузка в виде лампочки, в цепь так же включен УЗИП, с одной стороны он подключен к фазному проводу после автоматического выключателя, с другой — к заземлению.
  • В нормальном режиме работы напряжение цепи составляет 220 Вольт, при таком напряжении варистор УЗИПа обладает высоким сопротивлением измеряющимся тысячами МегаОм, настолько высокое сопротивление варистора препятствует протеканию тока через УЗИП.
  • Что же происходит при возникновении в цепи импульса высокого напряжения, например, в результате удара молнии (грозового воздействия).

На схеме видно что при возникновении импульса в цепи резко возрастает напряжение, что в свою очередь вызывает мгновенное, многократное уменьшение сопротивления УЗИПа (сопротивление варистора УЗИПа стремится к нулю), уменьшение сопротивление приводит к тому, что УЗИП начинает проводить электрически ток, закорачивая электрическую цепь на землю, т.е. создавая короткое замыкание которое приводит к срабатыванию автоматического выключателя и отключению цепи. Таким образом ограничитель импульсных перенапряжений защищает электрооборудование от протекания через него импульса высокого напряжения.

Согласно ГОСТ Р 51992-2011 разработанного на основе международного стандарта МЭК 61643-1-2005 есть следующие классы УЗИП:

УЗИП 1 класс — (так же обозначается как класс B) применяются для защиты от непосредственного грозового воздействия (удара молнии в систему), атмосферных и коммутационных перенапряжений. Устанавливаются на вводе в здание во вводно-распределительном устройстве (ВРУ) или главном распределительном щите (ГРЩ).

Обязательно должен устанавливаться для отдельно стоящих зданий на открытой местности, зданий подключаемых к воздушной линии, а так же зданий имеющих молниеотвод  или находящихся рядом с высокими деревьями, т.е. зданиях с высоким риском оказаться под прямым или косвенным грозовым воздействием. Нормируются импульсным с формой волны 10/350 мкс.

Номинальный разрядный ток составляет 30-60 кА.

УЗИП 2 класс — (так же обозначается как класс С) применяются для защиты сети от остатков атмосферных  и коммутационных перенапряжений  прошедших через УЗИП 1-го класса. Устанавливаются в местных распределительных щитках, например во вводном щитке квартиры или офиса. Нормируются импульсным током с формой волны 8/20 мкс Номинальный разрядный ток составляет 20-40 кА.

УЗИП 3 класс — (так же обозначается как класс D) применяются для защиты электронной аппаратуры от остатков атмосферных и коммутационных перенапряжений, а так же высокочастотных помех прошедших через УЗИП 2-го класса.

Устанавливаются в разветвительные коробки, розетки, либо встраивается непосредственно в само оборудование. Примером использования УЗИПа 3-го класса служат сетевые фильтры применяемые для подключения персональных компьютеров. Нормируются импульсным током с формой волны 8/20 мкс.

Номинальный разрядный ток составляет 5-10 кА.

Характеристики УЗИП:

  • Номинальное и максимальное  напряжение — максимальное рабочее напряжение сети на работу под которым рассчитан УЗИП.
  • Частота тока — рабочая частота тока сети на работу при которой рассчитан УЗИП.
  • Номинальный разрядный ток (в скобках указана форма волны тока) — импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА), который УЗИП способен пропустить многократно.
  • Максимальный разрядный ток (в скобках указана форма волны тока) — максимальный импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА) который УЗИП способен пропустить один раз не выйдя при этом из строя.
  • Уровень напряжения защиты — максимальное значение падения напряжения в килоВольтах (кВ) на УЗИПе при протекании через него импульса тока. Данный параметр характеризует способность УЗИПа ограничивать перенапряжение.
  1. Общим условием при подключении УЗИП являетя наличие со стороны питающей сети предохранителя или автоматического выключателя соответствующего нагрузке сети, поэтому все представленные ниже схемы будут включать в себя автоматические выключатели (схему подключения УЗИП в электрощитке смотрите здесь):
  2. Схемы подключения УЗИП (ОПС, ОИН) в однофазную сеть 220В (двухпроводную и трехпроводную):
  3. Схемы подключения УЗИП (ОПС, ОИН) в трехфазную сеть 3800В
  4. Принципиальные схемы подключения УЗИП выглядят следующим образом:

При устройстве многоступенчатой защиты от перенапряжения, т.е. установки УЗИПов 1-го класса в ВРУ здания совместно с УЗИПами 2-го класса в распределительных щитах здания и с УЗИПами 3-го класса, например, в розетках, необходимо соблюдать расстояние между УЗИПами по кабелю не менее 10 метров:

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в х!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Источник: https://elektroshkola.ru/apparaty-zashhity/uzip/

Ссылка на основную публикацию
Adblock
detector