Прожиг кабеля: методика, применяемые установки для прожига

В последние годы беспрожиговые методы поиска повреждений энергетических кабелей получили в России довольно широкое распространение. Возможности использования таких методов в российском электросетевом хозяйстве остаются ограниченными.

Это связано с тем, что большая часть кабельных линий остается неоттрассированной, а на таких кабелях одними беспрожиговыми методами и акустическим поиском не обойдешься.

Поэтому самой популярной схемой поиска повреждений на энергетических кабелях в России остается и в ближайшие годы останется схема:

Прожиг кабеля: методика, применяемые установки для прожига

Залог эффективности работы по такой схеме – качественные прожигающие установки от предприятия «АНГСТРЕМ».

Для отыскания повреждений с помощью импульсной рефлектометрии и индукционного поиска необходим прожиг, обеспечивающий преобразование высокоомных однофазных повреждений кабеля в низкоомные двух или трехфазные с появлением надежного металлического мостика в месте повреждения.

Если при прожиге удается достичь замыкания жилы на жилу, то проблем с отысканием точного места повреждения больше не возникает. С другой стороны, «вкачивание» в кабель большой мощности в процессе прожига не должно приводить к тому, чтобы кабель выходил из строя в других местах.

Прожиг кабеля высоковольтного является подготовительной процедурой, обеспечивающей возможность использования совокупности методов ОМП. Некоторые методы ОМП применимы только при переходном сопротивлении в месте повреждения изоляции не более сотен или даже единиц Ом (в отдельных случаях – десятых долей Ома). Снизить переходное сопротивление – задача прожига.

Технология процесса прожига:

Первый этап — предварительный высоковольтный прожиг кабеля, осуществляется с помощью высокого напряжения и низких токов до момента образования пробоя в кабеле. Стандартная прожигающая установка выдает максимальное напряжение порядка 20–25 кВ.

Процесс высоковольтного прожига происходит следующим образом: на поврежденный кабель подается минимальное напряжение и затем происходит его плавный подъем до 20–25 кВ или до того значения, на котором удается добиться пробоя, после чего начинается процесс прожига.

Максимальное напряжение при прожиге кабеля не должно превышать 0,5–0,7 U исп., однако на практике такого напряжения не всегда хватает, чтобы осуществить предварительный прожиг.

Если прожигающая установка, выдающая максимальное напряжение 20–25 кВ, не в состоянии обеспечить пробой кабеля, дополнительно в комплексе с ней используют установку с максимальным напряжением 60–70 кВ, но с меньшей мощностью.

Оборудование данного типа называют установками для испытаний и прожига высоковольтных кабелей, они могут подключаться к прожигающей установке либо использоваться обособленно.

Второй этап — прожиг кабеля, начинается с момента пробоя и возникновения короткого замыкания и осуществляется с помощью понижения напряжения и увеличения силы тока до момента преобразования однофазного замыкания в двух или трехфазное (сваривания жилы с жилой). Вначале источник высокого напряжения разрушает изоляцию кабеля минимальным током, затем, по мере того как осуществляется прожиг, значения напряжения постепенно снижаются, а значения тока увеличиваются.

В случае дополнительного использования установки для испытания и прожига с максимальным напряжением 60–70 кВ, она производит процесс прожига напряжением от 60–70 кВ до 20–25 кВ, после чего в работу автоматически включается основная прожигающая установка, обладающая большей мощностью.

Третий этап — дожиг кабеля, является завершающим этапом прожига и производится на низких напряжениях и высоких токах порядка 20–60 А в зависимости от модели прожигающей установки. Данный этап осуществляется с помощью низковольтного источника, который автоматически подключается при падении напряжения до определенных значений.

В случае возникновения замыкания одной жилы на оболочку для разрушения проводящего мостика между жилой и оболочкой используют специальные достаточно мощные прожигающие установки, способные выдавать большие значения токов (300 А). Нужно отметить, что использование установок данного типа может приводить к снижению ресурса кабеля и его повреждению в иных, «слабых» местах.

Типы установок для прожига кабелей поставляемые компанией «АНГСТРЕМ»

Предприятие «АНГСТРЕМ» поставляет три типа прожигающих установок:

  1. Установки для испытания и прожига высоковольтных кабелей с максимальным напряжением 60–70 кВ, используемые как вспомогательное оборудование на начальных этапах прожига.
  2. Установки прожига с максимальным напряжением 20–25 кВ, с несколькими высоковольтными и одним низковольтным источником.
  3. Установки дожига, предназначенные для разрушения металлического мостика между жилой и оболочкой большими токами (300 А) в случае однофазного замыкания на жилу.

При выборе той или иной модели необходимо учитывать, как производственные задачи, так и характеристики уже имеющегося в наличии оборудования и его совместимость с приобретаемым.

Пример совместимости оборудования «АНГСТРЕМ» для прожига 

Прожиг кабеля: методика, применяемые установки для прожига

Основные технические характеристики прожигающих установок компании «АНГСТРЕМ»

Наименование оборудования Максимальное выходное напряжение, кВ Максимальный выходной ток, А Количество ступеней  Характеристики ступеней, кВ
АПУ 1-3М 24 40 4 25; 5; 1; 0,3
АПУ-2М 30 80 8 30; 17; 8; 5; 1,7; 1; 0,3; 0,18
МПУ-3 «Феникс» 20 20 4 20; 5; 0,6; 0,3
УД-300 0,25 300 1 0,25
ИПК — 1 (ВПУ — 60 + МПУ — 3 Феникс) 60 20 5 60; 20; 5; 0,6; 0,3

Важные параметры прожигающих установок

Прожигающая установка состоит из нескольких высоковольтных источников и одного низковольтного. Максимальные значения тока и напряжения каждого источника называют ступенями, их количество может варьироваться от четырех до шести.

В процессе прожига кабеля по мере снижения напряжения пробоя осуществляется переход на следующую ступень прожигания. Как только по параметрам установки представляется возможность включить на параллельную работу (или отдельно) более мощную ступень, она включается в работу.

Под более мощной ступенью понимается установка с меньшим внутренним сопротивлением и большим током.

Возможность непрерывного прожига

Прожигающие установки старого образца использовали ручное переключение ступеней оператором, что нередко приводило к прерыванию горения дуги, увеличивало время прожига и создавало возможность для «заплывания» пробоев.

Современные устройства прожига снабжены автоматическими системами переключения ступеней прожига, исключающие разрыв дуги в месте прожига, что существенно сокращает затраты времени на подготовительные работы для отыскания мест повреждения.

Часто такой прожиг называют «бесступенчатым», что не должно вводить специалистов в заблуждение: данное понятие вовсе не означает отсутствие нескольких силовых блоков (ступеней) — просто переключение между ними производится автоматически, без участия оператора.

Для генерации высокого напряжения в конструкции прожигающих установок используются либо масляные трансформаторы, либо «сухие» трансформаторы. Вопрос автоматического переключения ступеней без разрыва дуги решен в обоих типах устройств, однако существует мнение, что только сухие трансформаторы могут обеспечить непрерывный прожиг в любых условиях.

Связано данное явление с разным энергопотреблением двух видов трансформаторов в режиме короткого замыкания.

Масляные трансформаторы имеют существенно большее энергопотребление в режиме короткого замыкания, поэтому держать их включенными одновременно в процессе всего прожига неэффективно, следовательно, при понижении напряжения происходит отключение источника с масляным трансформатором, генерирующего более высокое напряжение. Очень часто переход на более мощную ступень прожигания приводит сначала к «заплыванию», т.е. к подъему пробивного напряжения, при этом следует вернуться к предыдущей ступени более высокого напряжения, а затем после снижения напряжения пробоя переходить на следующую ступень.

Вес и габариты оборудования в зависимости от типа трансформатора

Синхронизация работы с устройствами высоковольтного прожига

Установки прожига изоляции кабеля предприятия «АНГСТРЕМ» имеют возможность подключения устройств высоковольтного прожига, которые могут начать прожиг с 60–70 кВ.

Это существенно расширяет возможности при выполнении работ по поиску повреждений высоковольтных кабельных линий.

Прожигающие установки используются не только стационарно, но и в составе передвижных электротехнических лабораторий, где всегда реализуется возможность высоковольтного прожига.

Контроль оператором тока прожига

Неконтролируемый рост тока прожига при падении напряжения приводит к повреждению и выводу из строя соседних кабелей, что особенно актуально при прожиге в кабельных каналах.

В установках прожига предприятия «АНГСТРЕМ» реализована возможность автоматической или ручной установки максимально допустимого тока, это является плюсом, обеспечивающим безупречное качество работы специалистов на месте производимых работ.

Энергопотребление, возможность полноценно работать от автономного источника питания ограниченной мощности

Большая часть кабельных электротехнических лабораторий, оснащенная прожигающими установками, монтируется на базе автомобиля типа ГАЗели, разместить на борту которого электростанцию мощностью более 6 кВА не представляется возможным. Способность прожигающих установок «АНГСТРЕМ» работать от электростанции 6 кВа с сохранением достаточной мощности является функциональным преимуществом по сравнению с более энергоемкими устройствами.

Мощность прожигающей установки

Мощность прожигающей установки является одной из важных характеристик, влияющей на время прожига изоляции кабеля и его эффективность. Также более мощные установки хорошо зарекомендовали себя в условиях, когда кабели сильно замокли и требуют «сушки».

Длительность работы без перегрева

На сложных и неудобных повреждениях прожиг может продолжаться несколько часов. Если при этом прибор перегревается, то процесс приходится прерывать, что может привести к повторному заплыванию места повреждения. Чем длительнее непрерывное время работы установки, тем лучше.

Специалисты производственной компании «АНГСТРЕМ» всегда помогут Вам с выбором качественного оборудования!

Описание методики прожига кабеля, приведенное в данной статье, относится к

  • прожигу кабеля 0,4 кВ,
  • прожигу кабеля 6 кВ,
  • прожигу кабеля 10 кВ,
  • прожигу кабеля 20 кВ,
  • прожигу кабеля 35 кВ.

Статья подготовлена специалистами отдела инноваций © ООО «АНГСТРЕМ»

Прожиг кабеля: методика, применяемые установки для прожига

Хотите получать полезные методические материалы?

Источник: https://angstremip.ru/blog/519/

Прибор для прожига кабеля

Прожиг кабеля: методика, применяемые установки для прожига

Заказать

Задать вопрос по этому товару

Бесплатная доставкаКомпания ООО «АНК» предоставляет бесплатную доставку по всей территории России на большинство приборов, поставляемые организацией. Доставка осуществляется практически любой транспортной компанией или курьерской службой до терминала или до двери Покупателя.Подробности читайте в разделе «Доставка и оплата». Гарантия производителяГарантийный срок эксплуатации всех приборов и оборудования, поставляемых компанией «АНК», составляет 1 год (для некоторых приборов до 5 лет). В течение гарантийного срока Покупатель имеет право на ремонт изделия за счет Изготовителя при условии соблюдения всех правил эксплуатации, хранения и транспортировки.
Гарантия низкой ценыНаша компания гарантирует самую низкую цену на товар. Если вы нашли данный товар дешевле, мы готовы предоставить скидку и выставить счет с более низкой стоимостью. Чтобы воспользоваться данной услугой, необходимо предоставить коммерческое предложение или счет от конкурирующей организации. Официальный дилерНаша организация является официальным представителем (дилером, дистрибьютером) на территории России всего оборудования, представленного на сайте компании. Мы имеем соответствующие документы, подтверждающие данные полномочия и вправе реализовывать всю линейку приборов того или иного производителя.
  • Тип оборудования: испытательная система
  • Производитель: Seba KMT, Германия
  • Серия: Т22
  • Модель: Т22/13
  • Описание: прибор для испытаний кабелей
  • Гарантия на систему Т22/13: 12 месяцев.

Назначение системы Т22/13:

Устройство для прожига Т22/13 предназначено для определения мест повреждения в силовых кабелях низкого и среднего напряжения, а также в кабелях управления (контрольных кабелях). Мощный переносной прибор высокого напряжения 15 кВ производства немецкой компании SebaKMT используется преимущественно на предприятиях энергоснабжения.

  1. Высокая выходная мощность прибора и устойчивая работа при коротком замыкании дает возможность почти  во всех случаях без проблем преобразовать высокоомные и заплывающие повреждения кабелей в низкоомный параллельный  шунт, а часто даже в короткое замыкание.
  2. Надежная изоляция всех частей прибора от высокого напряжения и автоматический разряд проверяемого объекта после отключения или внезапного прекращения тока обеспечивает максимальную защиту пользователя.
  3. Применение

Прибор работает как источник энергии (тока) для определения мест  повреждения в силовых кабелях и в кабелях управления.

Преимущественно он используется для прожигания высокоомных и заплывающих повреждений в кабелях в сети энергоснабжения с низким и средним уровнем напряжения.

Кроме этого прибор можно использовать вместе с эхо-импульсным измерительным прибором для предварительного определения места повреждения кабеля методом затухания или импульсом  (ARM) электрической дуги.

Особенности устройства для прожига T22/13 В:

  • Устойчивый  к короткому замыканию;
  • Оснащенный современной схемой подключения для стабилизации мощности горения;
  • Максимальный ток горения 25 А;
  • Плавное регулирование напряжения горения от 0 до 15 кВ;
  • Указатель выходного тока и выходного напряжения;
  • Встроенная блокировка и разрядник;
  • Датчик тактовых импульсов для определения места замыкания на землю

Технические характеристики прибора SEBA T22/13 В:

Питание  200/240 В; 50 Гц (110 В, 60 Гц по запросу)
Потребляемая мощность  макс. 16 A — 3,5 кВА
Выходное напряжение  макс. 15 кВ
Эффективный выходной ток  300 мA
В случае согласования  25 A
Защита от перегрузок для  сетевого трансформатора, нулевых вентелей, сопротивления замыкания на землю
Схема датчика тактовых импульсов          для измерения заземления с зондом для измерения шагового напряжения
Размеры (Ш x В x Г)  548 x 585 x 254 мм (19 дюм. корпус)
Вес  около 57 кг

В компании «АНК» Вы можете купить Устройство для прожига Т22/13 по низкой цене в г. Москва и Московской области. Также Вы можете заказать товар у наших специалистов, связавшись по телефону: (499) 703-46-25 или оформив заявку на нашем сайте. Доставка оборудования может осуществляться во все города Республики Казахстан, Белоруссии и других стран СНГ, Европы и Азии.

Источник: http://msk.ank-ndt.ru/produkcziya/kontrol-podzemnyix-truboprovodov/priboryi-dlya-diagnostiki-kabelej/ustrojstvo-dlya-prozhiga-t22/13.html

Схема устройства для сваривания двух жил в неисправном кабеле — блог СамЭлектрик.ру

Прожиг кабеля: методика, применяемые установки для прожига

Представляю на суд читателей первую статью летнего конкурса. Напоминаю, что все статьи предыдущего конкурса, а также правила и итоги можно увидеть по этой ссылке.

Автор – Марченко  Борис Данилович.

Вот что он рассказывает о себе:

Я  инженер – электрик,  пенсионер.  От  случая к случаю ко мне обращаются действующие энергетики    и  руководители местных предприятий  с  различными  просьбами.   Имею  несколько  публикаций  в профильных  журналах.

  • Ниже приведена статья:
  • При несоблюдении правил технической эксплуатации электрических кабелей, особенно с бумажной изоляцией типа ААБ-1 3*35, ААБ 3*120 при продолжительной эксплуатации наблюдается «пробой» (короткое замыкание) по пути жила – жила или жила – заземления оболочка.

О том, что произошёл «пробой», служба эксплуатации узнает после срабатывания автоматической защиты автомата кабеля. Потребитель остается без электроэнергии. Нужно найти место «пробоя» в кабеле и устранить неисправность.

Реальное использование прибора  на  практике неоднократно  успешно применялось мной на подземных  кабелях  на  глубине до одного  метра. Во  всех  случаях сваривание жил  было удачным.

Для контроля факта сваривания   применяется обычная  лампа  накаливания,  а   локализация  места сварки (т.е.

  места  пробоя) с  точностью  до 0,5,-1,0 метров по профилю кабеля определяется  рулеткой по показаниям прибора Р5.

Место «пробоя» кабеля жила – жила имеет сопротивление изоляции в пределах 500…100 кОм. Для более точного определения места повреждения применяются приборы типа Р5-10, Р5-13 и др. и звуковой генератор и кабельный искатель.

Но для нормальной работы поисковых приборов нужно снизить сопротивление изоляции кабеля до значений 10…2 ома. Для снижения сопротивления необходимо кабель «дожечь». Для этого применяется приборы типа УП-7, «феник» и др.

которых бывает и нет в наличии.

Предлагаю свою простую схему прибора для сваривания жил кабеля.В связи с тем, что напряжение в кабеле 220 V вызывает «пробой» срабатывание защиты то, это можно использовать для сварки жилы с защитной жилой кабеля. Нужно только ограничить ток, включить последовательно сопротивление и реле времени для ограничения времени действия сварки.

Рис.1. Схема прибора для сваривания жил в неисправном кабеле.

Схема прибора ( см рис.1) состоит из небольшого количества доступных деталей.

Это: пускатель ПМЕ-211 с катушкой 220 V, автоматический выключатель А1 с током срабатывания 150 … 200 а, два мощных сопротивлений R1=1,8 ома и R2=1,8 ом мощностью по Р= 500 вт, которые можно при необходимости включить последовательно. Реле времени 4 … 10 сек. с питанием от трансформатора 220/24, 24 вольта постоянного тока.

Другие детали – вводной автоматический выключатель с током срабатывания 150-200 а, трансформатор тока 200/5, амперметр 5а, токовое реле с током срабатывания 20а.

Для контроля сваривания установлена лампа 220 V 75 ватт. После отключения пускателя ПМЕ-211 если лампа горит, значит произошла сварка двух жил кабеля.

При подключении обязательно соблюдать правильную последовательность подключения. Первым заземляется одна поврежденная жила кабеля. Потом подключается Ре на зажим Х3 аппарата. Подключается N (ноль) на зажим Х2. Автомат А1 выключен и не подает фазу L1 на зажим Х1. Аппарат готов к работе.

Для работы сделать следующее. Включить автомат А1, нажать кнопку «Пуск» и ждать сваривания.

Были проведены несколько попыток сварить жилу силового кабеля с заземленной оболочкой кабеля. Положительный результат получался не всегда.

При прожигании нужно помнить о пожарной безопасности и электробезопасности.

Прибор собран в корпусе старого компьютера. Вес 15 кг.

  1. Фото прибора для сваривания жил в электрическом кабеле
  2. Фото автора со своим изобретением:
  3. Автор Марченко Борис Данилович
  4. Голосование за статьи конкурса начнется 1 июня, а пока задавайте вопросы автору.

Если статья понравилась, проголосуйте за неё здесь и сейчас:

Голосование за авторов летнего Конкурса

  • 1. Марченко Борис Данилович со статьями о сваривании жил и поиске скрытой проводки (49%, 29 Голосов)
  • 3. Сергей Пикалов со статьёй о проводке в стройварианте (34%, 20 Голосов)
  • 2. Алексей Сидоркин со статьёй о ремонте дрели Bosch (17%, 10 Голосов)

Всего проавших: 59

Источник: https://1000eletric.com/pribor-dlya-prozhiga-kabelya/

Аппараты для прожига кабеля

Прожиг кабеля – это процесс преобразования специальными приборами однофазных, высокоомных повреждений на изоляционном покрытии кабелей в трех, двухфазные низкоомные с формированием в месте повреждения целостности металлического моста. В идеале при прожиге кабеля можно достигнуть замыкания жилы на жилу, благодаря чему будет легче обнаружить место повреждения. Для прожига кабеля используют прожигающие установки, аппараты и другие приборы.

Установки для прожига кабеля

На сегодняшний день существует много различных установок, аппаратов и приспособлений для осуществления прожига кабеля. Одними из самых распространенных, являются следующие:

І. Установка прожигающая УП-7-3М;

ІІ. Установка для испытания и прожига изоляции силовых кабелей АИП-70.

Установка прожигающая УП-7-3М

Прожиг кабеля: методика, применяемые установки для прожига

  • Установка для прожига кабеля УП-7-3М предназначена для использования при преобразовании заплывающих или высокоомных повреждений на силовых кабелях с напряжением в диапазоне от 0,4 кВ до 35 кВ в низкоомные, чтобы создать специальные условия для:
  • — определения местонахождения дефекта в силовом кабеле импульсным методом;
  • — определения места нахождения неисправностей при помощи звукочастотных установок.

Установка для испытания и прожига изоляции силовых кабелей АИП-70

Данная установка предназначена для проведения испытаний прочности изоляции на силовых кабелях и твердых диэлектриках, при помощи выпрямленного напряжения, переменного напряжения и предварительного прожига дефектной изоляции силовых кабелей.

В случае возникновения повреждений в муфтах или же заплывающих пробоев изоляции, становится недостаточной величина пробивного напряжения прожигающих блоков.

При использовании установки АИП-70 можно повысить напряжения до состояния пробоя и при этом снизить уровень сопротивления до значения, при котором будет возможным использование более мощного прожигающего блока.

АППАРАТ ПРОЖИГА КАБЕЛЯ АПУ 1-3М

Аппарат прожига кабеля АПУ 1-3М предназначен для прожига дефектной изоляции в случае необходимости обнаружения места повреждения путем снижения уровня переходного сопротивления изоляционного покрытия.

Изоляционное покрытие в месте предполагаемого повреждения прожигается до уровня, при котором можно будет воспользоваться более точными методами обнаружения и распознавания дефектов.

Данный аппарат можно использовать как в стационарных условиях, так и в составе передвижных электротехнических лабораторий для испытания кабеля. Аппарат АПУ 1-3М нужно использовать при низкой температуре окружающей среды.

Прибор АПУ 1-3М хорошо подходит для эксплуатации на промышленных предприятиях, которые имеют в личном использовании электрические сети под рабочим напряжением в диапазоне от 0,4 кВ до 10 кВ.

Кроме этого его часто используют совместно со стационарной установкой крупного распределительного устройства. Аппарат прожига кабеля АПУ 1-3М изготовлен в Российской Федерации. Гарантийный строк обслуживания данного аппарата – один год.

ДОПУСТИМОЕ СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ КАБЕЛЯ

Для проведения контроля над техническим состоянием изоляционного покрытия кабелей, нужно периодически проводить замеры уровня сопротивления и сравнивать данные со стандартами под различные типы изоляции.

  1. Для абонентских, кабельных линий связи нужно использовать нормы сопротивления, которые описаны в ОСТ 45.82-96
  2. Для телефонных линий связи нужно использовать нормы сопротивления, которые описаны в ОСТ 45.36-97;
  3. Для ЛЭП нужно использовать нормы сопротивления, которые описаны в ОСТ 45.01-98;
  4. Для кабельных линий связи с металлическими жилами внутри нужно использовать нормы сопротивления, которые описаны в ОСТ 45-83-96.

Допустимый уровень сопротивления изоляционного покрытия кабеля должен находится на уровне не менее 100 кОм-км. Для элементов кабельных линий ГТС предусмотрены следующие нормы электрического сопротивления:

  • между жилами кабеля сопротивление находится на уровне 10000 МОм-км;
  • между жилами кабелей телефонных линий сопротивление находится на уровне 1000 МОм-км;
  • между заземлением и экраном сопротивление находится на уровне 5 МОм-км;
  • между экраном и броней сопротивление находится на уровне 5 МОм-км;

Если при проверке состояния изоляционного покрытия обнаружены отклонения уровня сопротивления заданным значениям нужно, проверить изоляцию по всему силовому кабелю.

Источник: http://energochast.ru/useful-to-know/apparaty-dlya-prozhiga-kabelya/

Ремонт силового кабеля.Прожиг изоляции

  • Доброе время суток, друзья.
  • Сегодня продолжим цикл статей по ремонту силового кабеля. Рассмотрим порядок прожига изоляции специальной установки 
  • Для эффективного использования существующих методов определения места повреждения кабельных линий необходимо, чтобы переходное сопротивление изоляции в месте повреждения было от единиц до десятков кОм.
  • В большинстве случаев для этого необходимо прожигание изоляции кабельных муфт, прожигание изоляции кабельных жил вместе их повреждения и разрушение металлического спая (сварки) жил кабеля и оболочки при однофазных повреждениях. 
  • После снижения сопротивления в месте повреждения используется один из самых эффективных методов — акустический.

В случае невозможности определения места однофазного повреждения на трассе кабельной линии акустическим методом (сильные акустические помехи, большая глубина прокладки кабеля, отсутствие документации на прокладку кабеля и т.д.) производят прожигание места повреждения с помощью силовой прожигающей установки в целях перевода однофазного повреждения в междуфазное (двухфазное).

Определение места повреждения в этом случае осуществляют индукционным методом.

Описание методов определения мест повреждений кабельных линий приведены в предыдущих  статьях.

Прожигание производят за счет энергии, выделяющейся в канале пробоя. При этом происходит обугливание изоляции в месте повреждения и снижение переходного сопротивления.

Следует отметить, что прожигание также позволяет сравнительно просто выявлять повреждения в концевых заделках и на вскрытых кабелях по нагреву, появлению дыма и запаха гари. Следует иметь в виду, что эффективный прожиг имеет место лишь до тех пор, пока значение сопротивления в месте повреждения имеет тот же порядок, что и внутреннее сопротивление прожигательной установки.

Практически нельзя создать прожигательную установку, обеспечивающую достаточно высокое напряжение и малое внутреннее сопротивление. Поэтому единственно целесообразным методом прожигания является ступенчатый способ

Сущность его состоит в смене источников питания по мере снижения напряжения пробоя и сопротивления в месте повреждения. Источник питания более низкого напряжения легче сконструировать с меньшим внутренним сопротивлением. В настоящее время прожигающие установки имеют от 3 до 6 ступеней прожигания.

Прожигание может проводиться как на постоянном, так и на переменном токе. Верхние ступени прожигания выполняются на выпрямленном напряжении, а последняя ступень на переменном напряжении.

Рассмотрим три основных случая прожигания в силовых кабелях.

1. Прожигание изоляции кабельных муфт.

В кабельных муфтах возникают повреждения, вызванные дефектом монтажа, а также воздействием климатических факторов (возникновение трещин и пустот в мастике). Данный вид повреждений выявляется при профилактических испытаниях.

С помощью испытательной высоковольтной установки на поврежденной жиле кабеля, поднимается напряжение до пробоя.

При этом, если после нескольких пробоев напряжение пробоя не снижается или при сниженном напряжении электрическая прочность вновь возрастает, то такой характер процесса указывает на повреждения соединительных (и очень редко концевых) муфт.

В соединительных муфтах часто образуются трещины, пустоты, играющие роль как бы разрядников в газовой среде. Газы образуются вследствие разложения кабельной массы под действием дуги.

В момент пробоя в таких полостях давление резко повышается, способствуя гашению дуги. Кроме того, разряды в муфтах по более удлиненным, чем в кабеле, путям расплавляют кабельную массу, заливая канал разряда свежей массой. Такие пробои носят название «заплывающий пробой».

Если через 5 — 10 мин непрерывного повторения пробоев разрядное напряжение не снижается, прожигание следует прекратить. Для определения места повреждения кабельной линии в этом случае необходимо использовать один из методов, наиболее соответствующий значению достигнутого переходного сопротивления.

2. Прожигание изоляции кабеля.

При профилактических испытаниях повреждение может быть выявлено непосредственно в кабеле. При этом, если изоляция хорошо пропитана маслом, пробои могут повторяться длительное время до 5 — 10 мин, а иногда и дольше.

  1. После многократного повторения разрядов напряжение пробоя начинает снижаться, что позволяет (при максимальном значении тока испытательной установки) иметь повышенную частоту пробоев.
  2. Как только напряжение пробоя снизится до более низких значений, включают прожигательную установку на верхнюю ступень прожигания.
  3. После того как произойдет осушение и обугливание изоляции, процесс непрерывного чередования заряда и разряда в кабеле переходит в устойчивое протекание тока через место повреждения с постепенным снижением переходного сопротивления.

При этом, как только удается снизить напряжение прожигания, необходимо переключить прожигательную установку на более низкую ступень прожигания.

В процессе прожигания сопротивление в месте повреждения может увеличиться и в этом случае необходимо вернуться на более высокую ступень прожигания, чтобы добиться снижения сопротивления в месте повреждения и напряжения прожигания.

На низких ступенях прожигания при больших токах в канал повреждения попадают частицы расплавленного металла, как жилы, так и оболочки кабеля, что вызывает значительное снижение сопротивления в месте повреждения. При образовании сплошного металлического канала переходное сопротивление снижается до долей Ом.

В случае, когда необходимо перевести однофазное повреждение в междуфазное, используется схема, изображенная на рис.11.

С помощью прожигательной установки осуществляется прожигание изоляции поврежденной жилы L3 кабеля. Испытательная установка постоянного тока включена на две неповрежденные жилы и через разрядник к поврежденной жиле L3.

Емкость двух жил кабеля заряжается с помощью испытательной установки до напряжения пробоя разрядника, которое устанавливается равным 5 — 10 кВ, и импульс тока разряда разрушает образующийся под действием тока от прожигательной установки проводящий мостик в месте повреждения.

Периодическое создание за счет тока прожигания и разрушение вследствие тока разряда емкости двух неповрежденных жил проводящего мостика увеличивает объем разрушения изоляции.

Наличие напряжения от испытательной установки на неповрежденных жилах кабеля в переходном режиме увеличивает вероятность пробоя этих жил на поврежденную. В случае пробоя становится невозможным поднять напряжение от испытательной установки, вследствие чего перестает срабатывать разрядник.

Следует отметить, что не всегда удается перевести однофазное замыкание в междуфазное, а увеличение напряжения испытательной установки и напряжения срабатывания разрядника может привести к пробою изоляции жил кабеля в другом месте.

Прожиг кабеля: методика, применяемые установки для прожига

Рис. 11. Схема подключения оборудования при переводе однофазного повреждения в междуфазное (двухфазное):

  • 1 — испытательная установка постоянного тока; 2 — прожигательная установка; 3 — разрядник; 4 — поврежденный кабель
  • В случае, когда прожигание происходит в течение длительного времени при постоянном токе от прожигательной установки, а сопротивление в месте повреждения не снижается и составляет около 1000 — 5000 Ом, прожигание следует прекратить, так как место повреждения с отверстием в оболочке кабеля может находиться во влажной среде.
  • Снизить сопротивление в месте дефекта при таких повреждениях не удается .

3. Разрушение металлического спая (сварки) при однофазных повреждениях.

  1. Если через поврежденную жилу кабеля длительно протекал ток однофазного короткого замыкания на оболочку, то в месте повреждения возможно сваривание токоведущей жилы с экранирующей оболочкой.
  2. Разрушить место сварки прожиганием часто не удается, без чего не всегда можно определить место повреждения на трассе кабельной линии.
  3. Для разрушения места спая можно использовать батарею конденсаторов, емкость которой изменяется в зависимости от их соединения (параллельное, последовательное) от 5 до 200 мкФ при напряжении заряда 30 и 5 кВ соответственно.
  4. При этом дополнительно используется емкость неповрежденных жил кабеля относительно оболочки.
  5. Конденсаторы, подключенные к поврежденной жиле и оболочке кабеля через управляемый разрядник, заряжаются от высоковольтной испытательной установки.
  6. При импульсном разряде конденсаторов происходит разрушение проводящего спая за счет ударных электродинамических воздействий, сопровождающих протекание тока разряда.
  7. При достаточно прочных спаях, когда подобным способом разрушить их не удается, используют «отжигающие» установки, представляющие собой регулируемые выпрямительные устройства с пределами измерения выпрямленного тока от нуля до 1000 А.
  8. В этом случае разрушение спая происходит за счет его расплавления при прохождении через него тока большой величины.

Источник: http://elektrolaboratoriy.ru/2014/04/19/remont-silovogo-kabelya-prozhig-izolyacii/

Прожигание поврежденных мест изоляции кабеля

 Для прожигания поврежденных мест изоляции кабеля применяется полупроводниковые выпрямительные установки с селеновыми или германиевыми выпрямителями, а иногда прожигание ведется и переменным током непосредственно от трансформаторов.
Так как от прожигательной установки требуется не только большое значение тока, но и высокое напряжение, то требуемая мощность установки должна быть значительной. Поэтому наиболее целесообразным методом прожигания является «ступенчатый способ». Сущность его заключается в смене источников питания по мере снижения напряжения пробоя и переходного сопротивления в месте повреждения
Характеристика ступеней прожигания
Ступень прожигания Напряжение установки, кВ Внутреннее сопротивление установки, кОм Максимальный ток, А Вид установки
I 30 — 50 500 — 100 0,1 — 0,5 Трансформатор с германиевым или масляно-селеновым выпрямителем
II 5 — 8 5 — 1 5 — 10 Трансформатор с масляно-селеновым выпрямителем
III 0,05 — 0,5 0,05 — 0,0005 100 Генератор высокой частоты, трансформатор с отпайками, сетевой трансформатор
 Для прожигания изоляции кабелей может применяться также резонансный метод. Параллельно прожигаемому кабелю подключается катушка высокого напряжения, которая при настройке образует с кабелем резонансный контур. Колебания в этом контуре возбуждаются благодаря связи с другой катушкой, получающей питание от сети вязкого напряжения. В резонансном контуре может развиваться реактивная мощность до нескольких сотен киловольт-ампер, в то время как из сети низкого напряжения потребляется мощность примерно нескольких киловатт, идущая на покрытие потерь. Прожигательная установка получается легкой и портативной.
Процесс прожигания изоляции таким методом протекает по разному в зависимости от характера повреждения кабельной линии. Наиболее часто встречаются следующие случаи:
— при прожигании изоляции напряжение не снижается или после нескольких пробоев при сниженном напряжении электрическая прочность изоляции вновь возрастает. Это характерный для соединительных муфт, так называемый «заплывающий пробой». Если через 5 — 10 непрерывных повторений пробоев напряжение не снижается, то прожигание следует прекратить и определить место повреждения методом колебательного разряда и акустическим методом;
— после нескольких минут повторения пробоев разрядное напряжение снижается до значения, позволяющего произвести включение II ступени прожигания. Обычно прожигание в течение 5 — 10 мин на II ступени приводит к снижению напряжения пробоя до нуля, а переходного сопротивления — до 20 — 30 Ом. Затем включается III ступень. Иногда (при жидкой пропитке кабеля) переходное сопротивление вновь возрастает и приходится на короткое время возвращаться ко II ступени. Через несколько минут работы на II ступени следует произвести измерения прибором типа ИKД или другими аналогичными приборами. После этого целесообразно проверить включением испытательного напряжения остальные жилы, не прожглась ли изоляция этих жил в месте повреждения. Если будет обнаружен пробой, то следует снова провести цикл прожигания, затем определить место повреждения по схеме «фаза-фаза». Если пробой не произойдет, то место повреждения следует определить акустическим методом;
— после нескольких минут повторения пробоев на I ступени и снижения напряжения пробоя длительная работа на II ступени характеризуется устойчивым протеканием тока определенного значения. Причем переходное сопротивление не снижается меньше чем до 2 — 3 кОм. Это характерный случай места повреждения кабеля в воде. Прожигание следует прекратить и определить место повреждения петлевым и акустическим методами.
Прожигание кабелей, проложенных в коллекторах и в кабельных сооружениях, при необходимости разрешается производить с применением полупроводниковых выпрямительных установок, но током не более 3 А. Если кабель частично проложен в грунте и зона повреждения также расположена в грунте, то при необходимости прожигание можно вести любым методом.
 Наблюдение за прожиганием кабелей в колодцах и кабельных сооружениях должно производиться в соответствии с ПТБ и местными инструкциями

Источник: https://www.npo64.ru/prozhiganie-povrezhdennyix-mest-izolyaczii-kabelya

Чем «жгут» высоковольтные кабели?

Сравнение установок для прожига высоковольтных кабелей российского и украинского производства

Продолжаем серию статей, посвященных анализу рынка испытательного и диагностического оборудования.

Российский рынок оборудования постоянно растет, предложений аналогичных по свойствам и назначению приборов и установок становится все больше. С одной стороны, конкуренция между производителями очень выгодна потребителю, так как способствует появлению на рынке современного высокотехнологичного оборудования по адекватной цене.

С другой стороны, такое разнообразие сильно затрудняет процесс выбора: чем больше предложений, тем сложнее принять решение в пользу того или иного варианта.

Для того, чтобы вы могли свободно ориентироваться в огромном море предложений, поступающих от производителей, мы пригласили на роль эксперта и автора данной рубрики руководителя отдела маркетинга компании «ЭЛЕКТРОНПРИБОР», специализирующейся на комплексных поставках оборудования для нужд энергетики, Ирину Кузьменко.

В одном из прошлых номеров журнала мы говорили о трассоискателях, предназначенных для определения мест повреждения кабельных линий. Статья этого номера посвящена анализу рынка и сравнению прожигающих установок, без которых просто невозможно производить комплекс работ по поиску и отысканию мест повреждений высоковольтных кабельных линий.

Самой популярной схемой поиска повреждений на энергетических кабелях в России является традиционная схема «прожиг — импульсная рефлектометрия — индукционный поиск — подтверждение акустикой».

Для эффективного отыскания повреждений с помощью импульсной рефлектометрии и индукционного поиска необходим качественный прожиг, обеспечивающий преобразование высокоомных однофазных повреждений кабеля в низкоомные двух- или трехфазные с появлением надежного металлического мостика в месте повреждения. Если при прожиге удается достичь замыкания жилы на жилу то дальнейших проблем с отысканием точного места повреждения, как правило, не возникает.

Специалисты по обслуживанию кабельных линий нередко сталкиваются с таким неприятным явлением, как замыкание одной жилы на оболочку кабеля, при котором методы импульсной рефлектометрии и индукционного поиска не позволяют обнаружить точное местоположение дефекта. В данном случае необходимо сначала разрушить металлический спай между жилой и оболочкой, что на практике не всегда удается осуществить без ущерба для состояния всего кабеля.

Технология процесса прожига

Первый этап — предварительный высоковольтный прожиг осуществляется с помощью высокого напряжения и низких токов до момента образования пробоя в кабеле. Стандартная прожигающая установка выдает максимальное напряжение порядка 20-25 кВ.

Процесс высоковольтного прожига происходит следующим образом: на поврежденный кабель подается минимальное напряжение и затем происходит его плавный подъем до 20-25 кВ или до того значения, на котором удается добиться пробоя, после чего начинается процесс прожига.

Считается, что максимальное напряжение при прожиге не должно превышать 0,5-0,7 U исп., однако на практике такого напряжения не всегда хватает, чтобы осуществить предварительный прожиг.

Если прожигающая установка, выдающая максимальное напряжение 20–25 кВ, не в состоянии обеспечить пробой кабеля, дополнительно в комплексе с ней используют установку с максимальным напряжением 60–70 кВ, но с меньшей мощностью.

Оборудование данного типа называют установками для испытаний и прожига высоковольтных кабелей, они могут подключаться к прожигающей установке, либо использоваться обособленно.

Второй этап — прожиг, начинается с момента пробоя кабеля и возникновения короткого замыкания и осуществляется с помощью понижения напряжения и увеличения силы тока до момента преобразования однофазного замыкания в двух- или трехфазное (сваривания жилы с жилой). Вначале источник высокого напряжения разрушает изоляцию кабеля минимальным током, затем, по мере того как осуществляется прожиг, значения напряжения постепенно снижаются, а значения тока увеличиваются.

В случае дополнительного использования установки для испытания и прожига с максимальным напряжением 60– 70 кВ, она производит процесс прожига напряжением от 60–70 кВ до 20–25 кВ, после чего в работу автоматически включается основная прожигающая установка, обладающая большей мощностью.

Третий этап — дожиг, является завершающим этапом прожига и производится на низких напряжениях и высоких токах порядка 20–60 А в зависимости от модели прожигающей установки. Данный этап осуществляется с помощью низковольтного источника, который автоматически подключается при падении напряжения до определенных значений.

В случае возникновения замыкания одной жилы на оболочку для разрушения проводящего мостика между жилой и оболочкой используют специальные достаточно мощные прожигающие установки, способные выдавать большие значения токов (300 А). Нужно отметить, что использование установок данного типа может приводить к снижению ресурса кабеля и его повреждению в иных, «слабых» местах.

Таблица 1. Типы установок для прожига кабелейНаименование оборудованияГородУстановки испытания и прожига (60–70 кВ)Установки прожига (напряжение 20–25 кВ, ток от 20 А)Установки дожига для разрушения мостика между жилой и оболочкой (ток 300 А)
АИП-70 г. Пенза V
ВПУ-60 (заменяет АИД-60П Вулкан М) г. Обнинск V
АПУ 1-3М г. Пенза V
ВУПК-03-25 г. Тула V
МПУ-3 Феникс г. Обнинск V
СВП-05Ц г. Харьков V
УП-7-3М г. Ярославль V
УД-300 г. Пенза V
ВП-300 г. Харьков V
ИПК-1 (ВПУ-60+ МПУ-3 Феникс) г. Обнинск V V

Типы прожигающих установок

Среди предлагаемого на российском рынке отечественного и украинского оборудования существуют три типа прожигающих установок (Таблица 1):

  • Установки для испытания и прожига высоковольтных кабелей с максимальным напряжением 60–70 кВ, используемые как вспомогательное оборудование на начальных этапах прожига.
  • Установки прожига с максимальным напряжением 20–25 кВ, с несколькими высоковольтными и одним низковольтным источником.
  • Установки дожига, предназначенные для разрушения металлического мостика между жилой и оболочкой большими токами (300 А) в случае однофазного замыкания на жилу.

При выборе той или иной модели необходимо учитывать как производственные задачи, так и характеристики уже имеющегося в наличии оборудования и его совместимость с приобретаемым. Совместно работать может оборудование, изготовленное одним и тем же производителем (Таблица 2).

Таблица 2. Пример совместимости оборудования для прожига
АИП-70 г. Пенза + АПУ 1-3М г. Пенза
ВПУ-60 (заменяет АИД-60П Вулкан М) г. Обнинск + МПУ-3 Феникс г. Обнинск

Важные параметры прожигающих установок

Прожигающая установка состоит из нескольких высоковольтных источников и одного низковольтного. Максимальные значения тока и напряжения каждого источника называют ступенями, их количество может варьироваться от трех до шести у разных производителей (Таблица 3).

Таблица 3. Основные технические характеристики прожигающих установок разных производителейНаименование оборудованияМаксимальное выходное напряжение, кВМаксимальный выходной ток, АКоличество ступенейХарактеристики ступеней, кВ
АПУ 1-3М 24 30 4 25; 5; 1; 0,3
ВУПК-03-25 25 55 5 20; 5; 1,05; 0,4; 0,15
МПУ-3 Феникс 20 20 3 20; 5; 0,6
СВП-05Ц 25 20 3 20; 5; 1
УП-7-3М 22 65 6 22; 11; 5,5; 1,4; 0,55; 0,16
ИПК-1 (ВПУ-60+ МПУ-3 Феникс) 60 20 4 60; 20; 5; 0,6
УД-300 0,25 300 1 0,25
ВП-300 0,25 300 1 0,25

В процессе прожига по мере снижения напряжения пробоя осуществляется переход на следующую ступень прожигания. Как только по параметрам установки представляется возможность включить на параллельную работу (или отдельно) более мощную ступень, она включается в работу. Под более мощной ступенью понимается установка с меньшим внутренним сопротивлением и большим током.

Возможность непрерывного прожига

Предыдущее поколение прожигающих установок использовало ручное переключение ступеней оператором, что нередко приводило к прерыванию горения дуги, увеличивало время прожига и создавало возможность для «заплывания» пробоев.

Современные устройства прожига снабжены автоматическими системами переключения ступеней прожига, исключающие разрыв дуги в месте прожига, что существенно сокращает затраты времени на подготовительные работы для отыскания мест повреждения.

Часто такой прожиг называют «бесступенчатым», что не должно вводить специалистов в заблуждение: данное понятие вовсе не означает отсутствие нескольких силовых блоков (ступеней) — просто переключение между ними производится автоматически, без участия оператора.

Для генерации высокого напряжения в конструкции прожигающих установок используются либо масляные трансформаторы, либо «сухие» трансформаторы — силовые транзисторы (Таблица 4).

Вопрос автоматического переключения ступеней без разрыва дуги решен в обоих типах устройств, однако существует мнение, что только сухие трансформаторы могут обеспечить непрерывный прожиг в любых условиях.

Связано данное явление с разным энергопотреблением двух видов трансформаторов в режиме короткого замыкания.

Масляные трансформаторы имеют существенно большее энергопотребление в режиме короткого замыкания, поэтому держать их включенными одновременно в процессе всего прожига неэффективно, следовательно, при понижении напряжения происходит отключение источника с масляным трансформатором, генерирующего более высокое напряжение.

Таблица 4. Вес и габариты оборудования в зависимости от типа трансформатораНаименование оборудованияТип трансформатораВес оборудования, кг
АПУ 1-3М масляный 260
ВУПК-03-25 сухой 45
МПУ-3 Феникс сухой 55
СВП-05Ц масляный 215
УП-7-3М масляный 210

Очень часто переход на более мощную ступень прожигания приводит сначала к «заплыванию», т.е. к подъему пробивного напряжения, при этом следует вернуться к предыдущей ступени более высокого напряжения, а затем после снижения напряжения пробоя переходить на следующую ступень.

В ситуации, когда происходит «заплывание» пробоя и повторный рост напряжения, в типах устройств с масляными трансформаторами более высокий по напряжению источник может быть уже отключен, что приводит к прерыванию дуги.

Напротив, «сухие трансформаторы» (силовые транзисторы) в режиме короткого замыкания имеют почти нулевое энергопотребление, что позволяет держать их включенными одновременно, благодаря чему дуга не прерывается ни при падении напряжения, ни при его росте («заплывании» пробоя).

Считается, что в борьбе с заплывающими пробоями лучшими показателями обладают прожигающие установки, изготовленные с применением сухих трансформаторов.

Синхронизация работы с устройствами высоковольтного прожига

В начале статьи, рассматривая технологию процесс прожига, мы говорили о возможности подключения устройств высоковольтного прожига, которые могут начать прожиг с 60–70 кВ (Таблица 2).

Сегодня все серьезные производители прожигающей техники применяют аналогичные решения, так как это существенно расширяет возможности при выполнении работ по поиску повреждений высоковольтных кабельных линий.

Прожигающие установки используются не только стационарно, но и в составе передвижных электротехнических лабораторий, где всегда реализуется возможность высоковольтного прожига.

Контроль оператором тока прожига

Неконтролируемый рост тока прожига при падении напряжения приводит к повреждению и выводу из строя соседних кабелей, что особенно актуально при прожиге в кабельных каналах.

Если в установке прожига реализована возможность автоматической или ручной установки максимально допустимого тока, это является ее плюсом, обеспечивающим безупречное качество работы специалистов на месте производимых работ.

Энергопотребление, возможность полноценно работать от автономного источника питания ограниченной мощности

Большая часть кабельных электротехнических лабораторий, оснащенная прожигающими установками, монтируется на базе автомобиля типа ГАЗели, разместить на борту которого электростанцию мощностью более 6 кВА не представляется возможным.

Способность прожигающей установки работать от электростанции 6 кВа с сохранением достаточной мощности является функциональным преимуществом по сравнению с более энергоемкими аналогами.

Мощность прожигающей установки

Мощность прожигающей установки является одной из важных характеристик, влияющей на время прожига и его эффективность. Также более мощные установки хорошо зарекомендовали себя в условиях, когда кабели сильно замокли и требуют «сушки» (Таблица 5).

Таблица 5. Примеры значений выходной мощности прожигающих установокНаименование оборудованияВыходная мощность, кВА
МПУ-3 Феникс 6
СВП-05Ц 8

Длительность работы без перегрева

На сложных и неудобных повреждениях прожиг может продолжаться несколько часов. Если при этом прибор перегревается, то процесс приходится прерывать, что может привести к повторному заплыванию места повреждения. Чем длительнее непрерывное время работы установки, тем лучше (Таблица 6).

Таблица 6. Время непрерывной работы прожигающих установок разных производителейНаименование оборудованияВремя непрерывной работы, заявленное производителем
АПУ 1-3М 5 минут в режиме прожига при заплывающем пробое, повторное включение через 30 минут
ВУПК-03-25 Цикличная работа: 1,5 минуты работы – 40 секунд перерыв
МПУ-3 Феникс Около 3 часов при температуре +20°С, без ограничений прожига по времени при температуре ниже 0°С
СВП-05Ц Наибольшее время непрерывной работы при токе нагрузки: 100% от максимального – 10 минут, повторное включение через 5 минут 70% от максимального – 30 минут, повторное включение через 15 минут
УП-7-3М Не более 20 минут, повторное включение через 20 минут

Сравнение стоимости установок для прожига высоковольтных кабелей

В завершение статьи поговорим о таком немаловажном факторе, как стоимость оборудования.

Предложений прожигающих установок на рынке не так уж много, среди них условно можно выделить три основных ценовых сегмента: низкобюджетные (Харьков, Пенза, Тула), среднебюджетные (Обнинск, Ярославль), и высокобюджетные (Германия, Австрия и прочие импортные установки).

В сегменте средне- и высокобюджетных установок производители ведут активную маркетинговую и рекламную деятельность с целью донести до потребителя информацию о выгодах приобретения той или иной модели и обосновать ее цену: участвуют в выставках, проводят технические семинары.

Производители малобюджетных установок уделяют меньше внимания маркетингу и продвижению, делая ставку на ценовую доступность оборудования.

Установки, о которых идет речь в данной статье, трудно сравнивать только по цене, так как все они сконструированы по разным схемам, обладают разными возможностями, каждый производитель делает упор на некие индивидуальные преимущества, поэтому специалистам мы советуем, основываясь на материале нашей статьи, прежде всего разобраться в характеристиках оборудования, понять его возможности, выбрать оптимальный вариант для работы в ваших условиях, и только потом проводить собственный анализ «цена — мои преимущества при работе с данной установкой». Актуальные цены на сайте нашей компании — www.electronpribor.ru

Надеемся, что наша статья поможет вам сделать правильный выбор.

Подразделение аналитики и маркетинга ООО «ЭЛЕКТРОНПРИБОР»

Источник: https://market.elec.ru/nomer/45/chem-zhgut-vysokovoltnye-kabeli/

Ссылка на основную публикацию