Термоэлектрический генератор: принцип работы, применение, как сделать

Большинство начинающих электриков интересуется о возможности создания не затратного и автономного источника электроэнергии. Зачастую, например, выехав на пикник, рыбалку либо просто отдохнуть на свежем воздухе, критически не хватает электричества для зарядки какого-либо прибора или освещения в темное время суток.

  • Термоэлектрический генератор: принцип работы, применение, как сделать
  • В таких случаях может помочь самостоятельно сделанный термоэлектрический генератор, для дома такой прибор не подойдет, если только в крайних случаях.
  • Термоэлектрический генератор: принцип работы, применение, как сделать
  • При помощи его можно вырабатывать электрического напряжение до пяти вольт, этого будет достаточно для зарядки гаджетов и подключения лампочки.
  • Термоэлектрический генератор: принцип работы, применение, как сделать
  • Для визуального ознакомления с ТЭГ нужно лишь посмотреть в любых источниках фото термоэлектрического генератора.
  • Термоэлектрический генератор: принцип работы, применение, как сделать

Что такое ТЭГ

  1. Данное устройство, дает возможность выработать электроэнергию из энергии тепла.
  2. Термоэлектрический генератор: принцип работы, применение, как сделать
  3. Нужно пояснить, что выражение «Тепловая энергия» не совсем правильное, так как тепло, это метод отдачи, не являющийся отдельным типом энергии. Этим определением обозначают общую кинетику структурных элементов:
  • молекул;
  • атомов;
  • иных частиц, которые входят в состав вещества.

Термоэлектрический генератор: принцип работы, применение, как сделатьТермоэлектрический генератор: принцип работы, применение, как сделатьТермоэлектрический генератор: принцип работы, применение, как сделатьТермоэлектрический генератор: принцип работы, применение, как сделатьТермоэлектрический генератор: принцип работы, применение, как сделать

Отличие ТЭГ от ТЭС

  • На ТЭС применяют топливо для выделения из жидкости пара, вращающий турбину электрогенератора.
  • С помощью теплоэлектрического генератора электроэнергия генерируется без посреднических преобразований.

Принцип работы

В девятнадцатом веке одним ученым обнаружилось возникновение электродвижущей силы в замкнутой цепи, при изменениях температуры в среде контактировании сурьмы с проводником.

Нагревая один из контактов, возникает магнитное поле, что вызывает ЭДС. При нагревании второго контакта, поток ЭДС противоположно изменяется.

Разорвав цепь, фиксируется противоположность потенциалов на ее краях. Это и является основным принципом работы термоэлектрических генераторов.

Спустя двенадцать 12 лет другой физик выявил противоположный эффект. Пропустив ток по цепи термопары, в контактах создается перепады температур.

  1. В принципе эти оба эффекта разные стороны одного и того же явления, дающего возможность непосредственно получить электричество из тепла.

Перспективы

  • В данное время продолжают ставить опыты, подбирая оптимальные термопары, позволяющие повысить коэффициент полезного действия.
  • Большая вероятность того, что скоро разработки усовершенствования доброкачественности термических элементов, обретут высший статус производства материала для повышения взаимодействия термопар, с применением высоких технологий:
  • нанотехнологий;
  • ям квантования и т.п.
  1. Вполне возможен вариант изобретения совсем другого принципа, с применением нестандартных материалов.

Были попытки соединения микроскопических проводников из золота искусственно синтезированной молекулой. Этот опыт в дальнейшем вполне может добиться успеха.

Сфера применения и виды

Учитывая низкий коэффициент полезного действия для теплоэлектрического генератора существуют два обстоятельства его использования:

  • там, где отсутствуют иные источники электрической энергии;
  • в местах, обладающими избытком тепла.

Как сделать собственноручно

  • Далее вкратце повествуем, как сделать генератор своими руками, который можно использовать в природных условиях или обесточенных местах.
  • Конечно, мощность этих приборов не сравнится с радиоизотопным экземпляром, но из-за трудной доступности плутония и его вредным качествам для человеческого организма, приходится радоваться и этому.

Потребуется элемент термоэлектричества. Лучше их использовать не в единственном экземпляре, подключив параллельно, это увеличит мощность.

Однако есть большая проблема, необходимо подбирать элементы с похожими параметрами, что достаточно затруднительно либо дорого обходится, легче приобрести готовый прибор.

  1. Используя один элемент, мощности может не хватить даже зарядить самый простой гаджет.
  2. Еще нужен будет корпус из металла, к примеру, бывшего в употреблении и уже ненужного блока питания от персонального компьютера и элемент охлаждения процессора.

Главные нюансы сборки

Изначально нужно нанести на основание термопасту там, где предназначена фиксация основного элемента, прислонить его и прижать охлаждающей деталью. В итоге получается конструктивное изделие.

Сухой спирт, пожалуй, станет лучшим топливом для этого приспособления. Далее нужно подсоединить к сделанному прибору устройство стабилизирующие напряжение.

  • Схему возможно посмотреть на сайтах в интернете либо в иных источниках предлагающих эту тему.
  • Изделие готово, теперь осталось только произвести испытание.

Заключение

В заключении можно сказать, что изготовление данного устройства лучше доверить специалистам либо приобрести его. Попытка создать его самостоятельно может привести к неудаче.

Фото термоэлектрического генератора своими руками

Вам понравилась статья? Поделитесь 😉  

Источник: https://electrikexpert.ru/termoelektricheskij-generator-svoimi-rukami/

Термогенератор своими руками: инструкция по изготовлению преобразователя тепловой энергии в электрическую

Термоэлектрический генератор: принцип работы, применение, как сделать

Количество цифровых гаджетов постоянно увеличивается. К сотовому телефону добавились мобильная радиостанция, GPS-навигатор и фотоаппарат.

Таскать с собой полный котелок запасных аккумуляторов для всей этой электронной братии тяжело, а в холодное время года еще и бессмысленно – их емкость и мощность при низких температурах сильно сокращаются.

Поэтому каждый путешественник хотел бы обзавестись устройством, преобразующим в электричество доступную в походе энергию.

Весьма практичными оказались термогенераторы – источники, для работы которых необходимо тепло. На чем основан принцип их работы и как можно сделать термогенераторы электричества своими руками – об этом пойдет речь в этой статье.

Как определить термоЭДС металла?

Термоэлектродвижущая сила возникает в замкнутом контуре при соблюдении двух условий:

  1. Если он состоит хотя бы из двух проводников, изготовленных из различных материалов.
  2. Если все входящие в состав контура разнородные участки имеют различную температуру (хотя бы в области соединения).
  • В физике данное явление называют эффектом Зеебека.
  • Величина термоЭДС зависит от вида материалов и разности их температур.
  • Определяют ее по формуле:
  • Е = к (Т1 – Т2),
  • Где Т1 и Т2 – температура проводников;
  • К – коэффициент Зеебека.

Наибольшей производительностью обладают контуры, состоящие из разнородных полупроводников (обладающих р- и n-проводимостью). В металлах эффект Зеебека проявляется незначительно, за исключением некоторых переходных металлов и их сплавов, например, палладия (Pd) и серебра (Ag).

Принцип работы

Решать задачу по производству электричества из тепловой энергии приходится, как принято говорить в науке, от обратного. Противоположным эффекту Зеебека является эффект Пельтье, который состоит в изменении температур двух объединенных в замкнутый контур разнородных полупроводников при пропускании через них постоянного тока: один из них нагревается, второй – остывает.

Если направление тока изменить, изменится и направление теплового потока: первый полупроводник будет остывать, а второй – нагреваться. В качестве полупроводников чаще всего применяют твердую смесь кремния с германием и теллурид висмута.

Термоэлектрический генератор: принцип работы, применение, как сделать

Эффект Пельтье

Эффект, открытый Жаном Пельтье, получил широкое применение в различных сферах человеческой жизнедеятельности, где требуются холодильные машины, но нет возможности применить компрессорный тепловой насос на фреоне. Поэтому именно его именем назвали выпускаемые для этой цели устройства – элементы Пельтье.

Но если на такой элемент или, как его еще называют, термоэлектрический охладитель оказать воздействие с противоположной стороны, то есть создать на его полупроводниках разность температур, то мы получим эффект Зеебека: элемент Пельтье превратится в источник постоянного тока.

Конструкция термогенератора

Итак, идея термогенератора довольно проста: необходимо взять элемент Пельтье и сильно нагреть одну из его поверхностей. В генераторах заводского изготовления для этого применяются газовые горелки. Но создать такой прибор в домашних условиях довольно сложно – трудно обеспечить стабильное горение пламени в течение длительного времени.

Поэтому народные умельцы отдают предпочтение более простой версии термогенератора, о которой мы сейчас и расскажем.

Изготовление своими руками

Схематично устройство самодельной термоэлектростанции можно представить так:

Термоэлектрический генератор: принцип работы, применение, как сделать

  1. Элемент Пельтье положим на дно глубокой посудины – миски или кружки.
  2. Далее в эту посудину вставим еще одну: если используются миски, то понадобится такая же; если ваш выбор пал на кружки, то вторая должна быть чуть меньше первой.
  3. К выведенным от элемента Пельтье проводам присоединим преобразователь напряжения.
  4. Внутреннюю посудину заполним снегом или холодной водой, после чего всю конструкцию поставим на огонь.

Через какое-то время снег растает, превратится в воду и закипит. Производительность генератора при этом понизится, но зато турист получит возможность выпить горячего чайку. После чаепития можно будет заправить генератор новой порцией снега.

Чем больше термоэлементов (их еще называют ветвями) будет у приобретенного вами элемента Пельтье, тем лучше. Можно применить прибор марки TEC1-127120-50 – их у него 127. Данный элемент рассчитан на токи до 12А.

Порядок работ

Теперь рассмотрим процесс создания самодельного термогенератора в деталях:

  1. Поверхность каждой посудины в месте контакта с элементом Пельтье следует выровнять и зачистить, что обеспечит максимальный теплообмен. Для идеального прилегания можно отполировать донышки смазанным пастой ГОИ куском войлока, закрепленным в шпинделе электродрели.
  2. Присоединяем к контактам элемента Пельтье провода от электроплиты, снабженные термостойкой изоляцией. За неимением таковых можно применить, к примеру, провод МГТФЭ-0,35, обернув его термостойкой тканью.
  3. Смазав дно одной из посудин термопроводящей пастой, например, КПТ-8, укладываем на него элемент Пельтье. Подсоединенные к нему провода следует расположить так, чтобы их концы оказались вне емкости.
  4. Сверху элемент Пельтье снова смазываем термопастой и вставляем в нашу кружку или миску вторую емкость подходящего размера (у кружки нужно будет отрезать ручку).
  5. Пространство между емкостями необходимо заполнить термоустойчивым герметиком (можно купить в автомагазине состав для ремонта выхлопных труб). Он послужит теплоизоляцией между горячей и холодной сторонами генератора и дополнительной защитой для проводов.

Термоэлектрический генератор: принцип работы, применение, как сделать

Походный генератор электричества

Выступающие концы проводов можно приклеить к бортику кружки матерчатой изолентой.

Изготовление преобразователя

В ходе эксперимента установленный на электроплитку термогенератор при наличии снега во внутренней емкости обеспечил ЭДС в 3В и ток в 1,5А. После превращения снега в воду и ее закипания мощность генератора упала в три раза (напряжение составило 1,2В).

Чтобы использовать такой прибор в качестве зарядного устройства для телефона или другого гаджета, которому требуется стабильное напряжение в 5 В или 6,5 В, его необходимо оснастить преобразователем напряжения.

Рассмотрим два варианта.

Вариант 1

Термоэлектрический генератор: принцип работы, применение, как сделать

Производится она в России и ее легко можно найти в магазине радиодеталей или на радиорынке.

Воспользоваться не возбраняется и более мощными аналогами, но все они выпускаются в миниатюрных корпусах для поверхностного монтажа, так что придется помучиться с распайкой.

На вход микросхемы подается напряжение с элемента Пельтье, а сама она включается в режиме «5 Вольт» (штатный). Параллельно с элементом Пельтье на вход преобразователя напряжения следует припаять достаточно мощный шунтирующий диод. Он предотвратит движение тока в обратном направлении, если на генератор будет оказано противоположное температурное воздействие.

К примеру, будучи заполненным горячей водой он может быть по неосторожности установлен на какую-нибудь холодную поверхность.

К выходу преобразователя нужно припаять кабель от старого зарядного устройства, подходящего для нашей модели телефона или фотоаппарата, а также светодиодный индикатор на 5 В.

Недостаток этого варианта: предложенная в качестве преобразователя микросхема ограничивает мощность генератора, поскольку ток на ее выходе не превышает 100 мА. Таким образом, элемент Пельтье используется приблизительно на 20%, чего будет достаточно только для телефонов устаревших моделей.

Чтобы иметь возможность заряжать более мощные устройства, необходимо применить усложненную версию преобразователя напряжения.

Вариант 2

Более мощный преобразователь можно собрать по двухкаскадной схеме с применением пары микросхем MAX 756.

Чтобы при отключении потребителя генерируемый ток не пропадал зря, оснастим преобразователь встроенными аккумуляторами.

Соединенные последовательно, они включены в нагрузку первого каскада через выключатель, диод и токоограничивающий резистор. Сам каскад настроен на режим выхода «3,3 Вольт».

К выходу каскада №1 подключаем каскад №2, настроенный на режим выхода «5 Вольт». Оба каскада реализованы согласно схеме, приведенной в документации на микросхему MAX 756 (опубликована в Сети). Единственное отличие – цепь обратной связи каскада №2 (между выходом каскада и ногой №6 его микросхемы) дополняется последовательностью из 3-х кремниевых диодов, расположенных анодом к выходу.

Термоэлектрический генератор: принцип работы, применение, как сделать

Простейший походный термогенератор

Такое усовершенствование позволит получать на холостом ходу напряжение величиной 6,5 В (требуется для зарядки некоторых электронных устройств).

Чтобы упростить схему, можно применить микросхему MAX 757, которая снабжена отдельным выходом обратной связи.

Интерфейс этого преобразователя соответствует типу USB Type A. Но если к нему предполагается подключать USB-устройство, то последовательность диодов из цепи обратной связи 2-го каскада лучше убрать, чтобы выходное напряжение вернулось на уровень 5 В.

Эту версию преобразователя нельзя подключать к портам типа USB-Host.

Вариация на тему…

Элемент Пельтье можно просто прикрепить к колышку, втыкаемому в землю поблизости от костра.

  1. Чтобы создать достаточный температурный градиент, обе его поверхности нужно оснастить ребристыми радиаторами.

  2. На поверхности со стороны пламени радиатор должен иметь увеличенную площадь, а его ребра устанавливаются горизонтально.

  3. На противоположной стороне элемента установлен меньший радиатор, а его оребрение – вертикальное.

Видео на тему

Источник: https://microklimat.pro/otopitelnoe-oborudovanie/otopitelnye-pribory/termogenerator-svoimi-rukami.html

Термоэлектрический генератор

Главная > Генераторы > Термоэлектрический генератор

Огромное количество электронных устройств поглощает электрическую энергию, которую надо постоянно возобновлять. Находясь в пути, приходится возить с собой химические источники тока или вырабатывать электричество из механической энергии с помощью сложных и громоздких приспособлений.

Вид термоэлектрического генератора

Ещё раньше Зеебек обнаружил возникновение термо-ЭДС в цепи из разнородных проводников при поддерживании разной температуры в месте контакта.

На основании термоэлектрических эффектов был создан так называемый элемент или модуль «Пельтье», представляющий собой 2 керамические пластины с расположенным между ними биметаллом.

При подаче через них электрического тока, одна сторона пластины нагревается, а другая охлаждается, что позволяет создавать из них холодильники. На рисунке ниже изображены модули разных размеров, применяемые в технике.

Модули «Пельтье» разных размеров

Процесс является обратимым: если поддерживать температурный перепад на элементах с обеих сторон, в них будет вырабатываться электрический ток, что позволяет использовать устройство как термоэлектрический генератор для выработки небольшого количества электроэнергии.

Эффект «Пельтье» заключается в выделении тепла в месте контакта разнородных проводников при протекании по ним электрического тока.

Принцип действия модулей

На контакте разнородных проводников происходит выделение или поглощение тепла в зависимости от направления электрического тока. Поток электронов обладает потенциальной и кинетической энергией. Плотность тока в контактирующих проводниках одинакова, а плотности потоков энергии отличаются.

Если энергия, втекающая в контакт, больше энергии, вытекающей из него, это означает, что электроны тормозятся в месте перехода из одной области в другую и разогревают кристаллическую решётку (электрическое поле тормозит их движение). Когда направление тока меняется, происходит обратный процесс ускорения электронов, когда энергия у кристаллической решётки забирается и происходит её охлаждение (направления электрического поля и движения электронов совпадают).

Энергетическая разность зарядов на границе полупроводников самая высокая и в них эффект проявляется наиболее сильно.

Модуль «Пельтье»

Больше всего распространён термоэлектрический модуль (ТЭМ), представляющий собой полупроводники p-, и n-типов, соединённые между собой через медные проводники.

Схема принципа работы модуля

В одном элементе существует 4 перехода между металлом и полупроводниками. При замкнутой цепи поток электронов перемещается от отрицательного полюса АКБ к положительному, последовательно проходя через каждый переход.

Вблизи первого перехода медь – полупроводник p-типа происходит тепловыделение в полупроводниковой зоне, поскольку электроны переходят в состояние с меньшей энергией.

Вблизи следующей границы с металлом в полупроводнике происходит поглощение теплоты, в связи с «высасыванием» электронов из зоны р-проводимости под действием электрического поля.

На третьем переходе электроны попадают в полупроводник типа n, где они обладают большей энергией, чем в металле. При этом происходит поглощение энергии и охлаждение полупроводника около границы перехода.

Последний переход сопровождается обратным процессом тепловыделения в n-полупроводнике из-за перехода электронов в зону с меньшей энергией.

Поскольку нагревающиеся и охлаждающиеся переходы находятся в разных плоскостях, элемент «Пельтье» сверху будет охлаждаться, а снизу нагреваться.

На практике каждый элемент содержит большое количество нагревающихся и охлаждающихся переходов, что приводит к образованию ощутимого температурного перепада, позволяющего создать термоэлектрогенератор.

Как выглядит структура модуля

Элемент «Пельтье» содержит большое количество полупроводниковых параллелепипедов p-, и n-типов, последовательно соединённых между собой перемычками из металла – термоконтактов, другой стороной соприкасающихся с керамической пластиной.

В качестве полупроводников применяется теллурид висмута и германид кремния.

Достоинства и недостатки ТЭМ

К преимуществам термоэлектрического модуля (ТЭМ) относят:

  • малые размеры;
  • возможность работы, как охладителей, так и нагревателей;
  • обратимость процесса при смене полярности, позволяющая поддерживать точное значение температуры;
  • отсутствие подвижных элементов, которые обычно изнашиваются.

Недостатки модулей:

  • малый КПД (2-3%);
  • необходимость создания источника, обеспечивающего температурный перепад;
  • значительное потребление электроэнергии;
  • высокая стоимость.

Несмотря на недостатки, ТЭМ применяются там, где большие энергозатраты не имеют значения:

  • охлаждение чипов, деталей цифровых фотокамер, диодных лазеров, кварцевых генераторов, инфракрасных детекторов;
  • использование каскадов ТЭМ, позволяющих добиться низкой температуры;
  • создание компактных холодильников, например, для автомобилей;
  • термоэлектрогенератор для зарядки мобильных устройств.

При малой производительности ТЭГ целесообразно применять в походных условиях, где требуется получить электричество для зарядки сотового телефона или светодиодной лампочки. Простота конструкции позволяет изготовить электрогенератор своими руками.

Альтернативными источниками также являются солнечные батареи или ветрогенератор. Для первых требуются особые условия – наличие солнечного освещения, которое может быть не всегда. Другой источник имеет большие габариты и для него необходим ветер. Ещё одним недостатком у них является наличие подвижных частей, снижающих надёжность и имеющих большой вес.

Термогенераторы промышленного изготовления

Компания BioLite разработала новую модель для походов, позволяющую готовить пищу в компактной переносной печке на дровах и одновременно заряжать мобильное устройство от встроенного ТЭГ.

Компактная переносная печка на дровах

Устройство пригодится везде: на рыбалке, в походе, на даче. В качестве топлива можно применять всё, что горит.

При сгорании в топке топлива тепло передаётся через стенку модулю, который вырабатывает электричество.

При напряжении 5В, мощность на выходе составляет 2-4 Вт, чего вполне хватает для зарядки многих типов мобильных устройств и работы освещения на светодиодах.

Красной стрелкой изображено направление движения тепла, синей – холодного воздуха в топку, жёлтыми – подача электричества на вращение вентилятора подсоса воздуха и на выход генератора через USB.

Схема работы ТЭГ компании BioLite на дровах

Печь-генератор «Индигирка», разработанная петербургским предприятием Криотерм, имеет характеристики:

  • тепловая мощность – 6 кВт;
  • вес – 56 кг;
  • габариты – 500х530х650 мм;
  • эл. мощность при напряжении 5В – 60 Вт.

Печь является обычной отопительно-варочной, где с двух сторон закреплены термоэлектрогенераторы.

Как выглядит печь-термоэлектрогенератор «Индигирка»

Устройство довольно удобное, но впечатляет цена – 50 тыс. руб. Хоть печь, и предназначена для походных условий, но рядовым охотникам и рыболовам она будет явно не по карману. Как отопительная, она ничем не лучше обычных и более дешёвых моделей.

Если пристроить ТЭГ к простой печи, устройство, изготовленное своими руками, будет работать отлично.

ТЭГ своими руками

Чтобы термоэлектрический генератор собрать своими руками, необходимы следующие элементы:

  1. Модуль. Для генерирования электрического тока можно применять не все модули, а только те, которые способны выдержать нагрев до 300-4000С. Наличие запаса по нагреву необходимо, поскольку даже при незначительном перегреве элемент выходит из строя. Наиболее распространены модели типа ТЕС1-12712 в виде квадратных пластин с размером стороны 40, 50 или 60 мм.

Если взять максимальный размер, достаточно в конструкции, сделанной своими руками, применить один элемент. Первые 3 цифры маркировки – 127 означают, сколько элементов содержится в 1 пластине. Последние цифры показывают величину максимально допустимого тока, который составляет 12 А.

  1. Повышающий преобразователь. Он необходим для получения постоянного напряжения 5В. Генератор может выдавать меньшее напряжение, которое необходимо увеличить. Устройства выпускают зарубежные (типы 5V NCP1402 и MAX 756) и отечественные (3.3В/5В ЕК-1674). Для зарядки мобильника следует подобрать устройство с USB разъёмом.
  2. Нагреватель. Простейшими вариантами являются костёр, свеча, самодельная лампа или миниатюрная печка.
  3. Охладитель. Проще всего применять воду или в зимнее время – снег.
  4. Соединительные элементы. Необходимо оборудование для создания максимально возможного температурного перепада между двумя сторонами пластины. Здесь выбор за умельцами, они чаще всего применяют 2 кружки или кастрюли разных размеров, у которых отпиливаются ручки и где одна вставляется внутрь другой. Между ними помещается модуль и крепится на термопасту. К нему припаиваются 2 провода и подключаются к преобразователю напряжения.

Для повышения КПД генератора, днища металлических поверхностей кружек или кастрюль, контактирующие с пластиной генератора, следует отполировать. Кроме того, на места между донышками меньшей и большой кружек наносится термостойкий герметик. Тогда тепло от нагрева будет локализовано в месте нахождения модуля.

Провода между модулем и преобразователем защищаются термостойкой изоляцией и герметиком.

Во внутреннюю кружку наливается вода, и вся конструкция ставится на огонь. Через несколько минут можно проверить выходное напряжение мультиметром.

Для того чтобы собрать термоэлектрический генератор самостоятельно, понадобятся материалы:

  1. элемент «Пельтье»;
  2. корпус от старого блока питания компьютера для изготовления мини-топки;
  3. преобразователь напряжения с USB выходом на 5В при входном 1-5 В;
  4. радиатор с кулером от процессора;
  5. термопаста.

Затраты здесь небольшие и устройство вполне способно зарядить мобильный телефон. Генератор, собранный своими руками, является аналогом зарубежной модели фирмы BioLite. Если его собрать аккуратно, устройство будет надёжно работать долгое время, поскольку ломаться здесь нечему. Важно только не перегреть элемент «Пельтье», отчего он может выйти из строя.

При использовании куллера для охлаждения радиатора его следует подключить к генератору, после чего часть вырабатываемой энергии будет расходоваться на охлаждение.

Несмотря на дополнительные энергозатраты, КПД установки возрастёт. Если радиатор будет сильно нагреваться в процессе работы, необходимо принять меры по его охлаждению. Иначе эффективность работы генератора будет низкой.

Характеристики генератора следующие:

  • выходное напряжение – 5В;
  • мощность нагрузки – 0,5А;
  • тип выхода – USB;
  • топливо – любое.

Устройство изготавливается следующим образом:

  • разобрать блок питания, оставив корпус;
  • приклеить термопастой модуль «Пельтье» к радиатору. Клеить надо холодной стороной, где нанесена маркировка;
  • зачистить и отполировать наружную боковую поверхность корпуса блока питания и приклеить к ней элемент другой стороной (вместе с радиатором);
  • припаять провода от входа преобразователя напряжения к выводам пластины.

Проверить ТЭГ можно, если наложить внутрь топки тонких веточек и поджечь их. Через несколько минут можно подключать телефон, для подзарядки которого требуется разница температуры сторон модуля 1000С. На рисунке ниже изображён генератор в сборке.

Термоэлектрогенератор в сборке, изготовленный своими руками

При использовании ТЭГ необходимо соблюдать полярность подключения модулей.

Видео. Термоэлектрический генератор

Эффект «Пельтье» позволяет создать небольшие генераторы и холодильники, работающие без подвижных частей. Повышение качества модулей и снижение энергопотребления мобильных устройств позволяет создать своими руками термоэлектрогенератор для зарядки аккумуляторов и снабжения небольшим количеством энергией различные устройства, где КПД не имеет особого значения.

Источник: https://jelectro.ru/generatory/termoehlektricheskijj-generator.html

Термогенераторы. Устройство и работа. Виды и применение

Тепловая энергия и электрическая энергия – разные виды энергии, и мысль о преобразовании одного вида в другой напрашивается само собой (Термогенераторы). Электрическую энергию превратить в тепловую легко – это делает любая электроплитка, а иногда подобное преобразование является побочным и невыгодным для нас, как, например, в электролампочке накаливания.

Но существует и возможность получения электрической энергии непосредственно от источника тепла посредством устройств, называемых термогенераторы или термоэлектрогенераторы (ТЭГ), составляются из отдельных термоэлементов.

Устройство и принцип действия термоэлементов

Принцип действия термоэлементов основан на эффекте, открытом немецким физиком Зеебеком в 1821 году. Эффект Зеебека заключается в том, что в цепи из двух соединенных разнородных проводников возникает электродвижущая сила (ЭДС) постоянного тока, если место спая проводников и свободные (неспаянные) концы проводников поддерживаются при разных температурах.

Разнородными проводниками могут служить разные металлы либо полупроводники с разными типами проводимости (n-типа и p-типа). Суть эффекта в том, что энергия свободных электронов (как и энергия молекул любого газа), зависит от температуры – чем выше температура, тем выше энергия.

При контакте двух проводников электроны перемещаются от проводника с электронами более высокой энергии к проводнику с электронами менее высокой энергии.

Если такое устройство из двух проводников замкнуть на внешнюю нагрузку, в ней возникнет электрический ток, стремящийся выровнять энергию электронов в проводниках, чему можно воспрепятствовать постоянным подводом тепла к нагретому спаю и удержанием низкой температуры холодных свободных концов.

Особенности термоэлементов

Величина ЭДС термоэлемента (термоэдс) определяется по формуле E = a (T1 — T2), где а – коэффициент термоэдс (называемый еще коэффициентом Зеебека, удельной термоэдс или термосилой), зависящий от материала проводников, составляющих термоэлемент.

А T1 и T2 соответственно температура горячего и холодного концов термоэлемента.

Поскольку a – это значение ЭДС термоэлемента при разнице температур в 1 °С (или 1 кельвин, обозначаемый К, и равный одному градусу Цельсия), то и выражается a в микровольтах на градус или кельвин (мкВ/К).

Сложность в том, что коэффициент термоэдс зависит от материала проводников термоэлемента, и, если мы имеем 10 материалов, из которых составляются термоэлементы в любых сочетаниях, они попарно дадут 90 значений a.

Но ситуация облегчается тем, что значения коэффициентов термоэдс аддитивны, их можно складывать – если известны термоэдс двух материалом в паре с опорным материалом, то термоэдс пары материалов будет равна сумме термоэдс каждого из материалов в паре с опорным материалом.

https://www.youtube.com/watch?v=T1WYp4_Sego

Если взять один из металлов, например платину, за основу (опорный материал), и определять коэффициенты интересующих нас металлов относительно платины. То коэффициенты для всех прочих пар металлов определяются алгебраическим сложением (со знаком) коэффициентов составляющих пару металлов относительно платины (при этом сама платина в составе термоэлемента может отсутствовать).

Значение a несколько зависит от температурного диапазона и даже может менять знак в разных температурных диапазонах, оно также чувствительно к микроскопическим количествам примесей и к ориентации кристаллов в проводнике.

Поскольку разница температур в термобатареях обычно составляет сотни градусов, проще определить термоэдс относительно платины при нагреве одного конца термоэлемента до 100 °С, при поддержании нулевой температуры другого конца

Подсчитаем термоэдс для пары с наибольшей термоэдс сурьма-висмут: 4,7-(-6,5) = 11,2 (мВ). Для пары железо-алюминий термоэдс составит всего 1,6 — 0,4 = 1,2 (мВ), почти в 10 раз меньше. Не следует забывать, что эту ЭДС термоэлемент развивает при разности температур в 100 °С с пропорциональным изменением при иной разности температур.

ЭДС термоэлементов из металлических проводников лежит в пределах 5-60 мкВ/К. Наибольшую термоэдс дает контакт двух полупроводников, при нагреве горячих спаев до 300-400 °С можно получить термоэдс до 0,3В на один термоэлемент.

История создания

Первоначально термоэлементы использовались в измерительных приборах и датчиках температуры (термопарах), в последующем из них стали создавать термогенераторы, собирая термобатареи из термоэлементов. В термобатареях термоэлементы для повышения вырабатываемых напряжения и мощности соединяются параллельно-последовательно.

Первую термоэлектрическую батарею создали в 1823 году века датские физики Эрстед и Фурье с термоэлементами из сурьмы и висмута, разница температур создавалась газовой горелкой.

Термобатареи создавались и в последующие годы, но практического применения не находили, поскольку имели низкий коэффициент полезного действия (КПД), составлявший при электродах из чистых металлов менее процента.

Для поднятия КПД следовало применять в качестве электродов полупроводниковые материалы – окислы, сульфиды и интерметаллические соединения.

Советский академик А.И. Иоффе в начале 1930-х годов предложил превращать световую и тепловую энергию в электричество посредством полупроводников.

В годы войны «партизанский котелок» на основе термобатареи из константана и сурьмянистого цинка позволял вырабатывать электроэнергию, мощности которой хватало для питания портативной радиостанции.

Горячие спаи термобатареи нагревались пламенем костра, холодные находились в котелке с водой, что поддерживало разницу температур до 300 °С, при этом КПД доходил до 2%.

В 50-е годы в СССР выпускались термогенераторы для питания радиоприемников в неэлектрофицированных местностях. Горячие спаи термобатареи нагревались обычной керосиновой лампой, применявшейся для освещения, холодные спаи охлаждались воздушным радиатором с металлическими ребрами

Одна секция подобной батареи вырабатывала напряжение 1,2 В для питания цепей накала электронных ламп радиоприемников, другая – напряжение 2 В для питания вибропреобразователя, вырабатывающего анодное напряжение.

Общая мощность термобатареи составляла 4,6 Вт, вырабатываемой энергии хватало для питания распространенных в то время бытовых радиоприемников.

Подобный генератор работал практически бесплатно, не боялся работы вхолостую и короткого замыкания, срок службы не ограничивался.

Применение термоэлементов и термогенераторов

Термоэлемент, используемый для измерения температуры, принято называть термопарой. Термоэлектрические термометры состоят из термопары в качестве датчика и электроизмерительного прибора (милливольтметра), градуированного в °С. Точность определения температуры термопарами доходит до 0,01 °С. Работают они в диапазонах от нескольких градусов выше абсолютного нуля (-273 °С) до 2500 °С.

Термогенераторы вырабатывают электроэнергию посредством:

  • Сжиганием топлива и пиротехнических составов.
  • Радиоактивным распадом изотопов.
  • Работой атомного реактора.
  • Концентрацией солнечного света солнечным коллектором (зеркалом, линзой, тепловой трубой).
  • Съемом с выхлопных и печных труб.

Термоэлектрогенераторы собираются из термобатарей, набранных из полупроводниковых термоэлементов.

Термогенераторы различаются низко-, средне- и высокотемпературные с работой соответственно в диапазоне температур 20-300, 300-600 и 600-1000 °С.

В ТЭГ осуществляется прямое преобразование энергии с исходной тепловой энергией, и их КПД. При выработке электроэнергии подчиняется ограничениям второго закона термодинамики и не может превосходить КПД цикла Карно с работой в том же интервале температур. Из этого следует, что высокотемпературные термогенераторы потенциально обладают более высоким КПД.

К полупроводниковому материалу, пригодному для создания термогенераторов, предъявляются требования по высокому КПД, технологичности, низкой стоимости, высокому коэффициенту термоэдс, нетоксичности, возможности работы в широком температурном диапазоне. Материал термоэлементов – это обычно твердые растворы германий-кремний. КПД лучших ТЭГ составляет 15%, при мощности до нескольких сотен кВт. Иногда КПД самых совершенных термоэлектрогенераторов доходит до десятков процентов.

Термоэлектрогенераторы широко применяются в качестве бортовых источников питания на космических аппаратах, предназначенных для исследования дальнего космоса, где солнечные батареи неэффективны. Такие генераторы обычно используют тепло, выделяющееся при радиоактивном распаде плутония.

Используются термоэлектрогенераторы на автомобилях для полезного использования тепла выхлопной системы, на автоматических маяках, навигационных буях, метеостанциях, активных ретрансляторах.

Преимущества и недостатки термогенераторов

Преимущества ТЭГ:

  • Отсутствие движущихся частей.
  • Высокая надежность.
  • Большой (до 25 лет) срок службы.
  • Работа в широком диапазоне температур.
  • Автономность.

Недостатки ТЭГ:

  • Низкий КПД.
  • Сравнительно высокая стоимость.

Недостатки термоэлектрогенераторов преодолеваются по мере совершенствования технологий. Применения материалов с более совершенными характеристиками и их удешевления.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/jelektropitanie/termogeneratory/

Термоэлектрический генератор

Современное пользовательское электрооборудование нуждается в постоянной подкачке электричества, источники которого не всегда имеются «под рукой» (в длительном пешем путешествии, например).

С этой точки зрения, традиционные автомобильные аккумуляторы (АКБ) очень тяжелы для переноски и не годятся для классических походных условий.

Их может заменить такое удобное в эксплуатации и транспортировке устройство, как термоэлектрический генератор своими руками изготовленный из подсобных элементов (общий вид ТЭГ приведён на фото ниже).

Несмотря на свои внушительные размеры, этот агрегат имеет малый вес и может быть разборным, то есть вполне подходит для транспортировки во время похода. Ознакомимся с принципом работы термоэлектрического генератора более детально.

Эффект Пельтье, его обратимость

Изготовление автономных термических генераторов электричества стало возможным благодаря открытию известного из курса физики эффекта Пельтье, состоящего в следующем. Оказывается, что разнородные по структуре проводники при протекании через зону их спайки электрического тока обнаруживают интересное свойство, состоящее в появлении разницы температур между их пограничными точками.

На основании этого открытия был разработан специальный элемент «Пельтье», состоящий их двух разнесённых на некоторое расстояние пластин из керамики с помещённой между ними биметаллической прокладкой. При пропускании через такие системы электрических зарядов одна из этих обкладок нагревается, а другая, напротив, – охлаждается, что в принципе позволяет делать на их основе холодильные установки.

Важно! При изменении направления тока через стык проводников (при прямом эффекте) меняется вектор градации температуры на стыках.

На размещённом ниже рисунке изображены модули различного типа и размера, чаще всего применяемые в технических изделиях этого класса.

Разнообразие модулей «Пельтье»

Как и многие другие электродинамические явления, этот эффект является полностью обратимым. Последнее означает, что при нагревании одной стороны пластин Пельтье и охлаждении другой на стыке между ними появится ЭДС, а через контактную зону и подключённую нагрузку потечёт небольшой ток (эффект Зеебека).

По этому принципу и функционирует рассматриваемый в этом обзоре генератор на элементах Пельтье, который вполне может работать на открытом воздухе (на рыбалке или в походе, например).

При проявлении эффекта Зеебека наблюдается та же зависимость от полярности происходящих изменений, а именно: если менять охлаждаемый и нагреваемый стыки местами, будет меняться и направление тока во всей системе. Таким образом, обратный элемент Пельтье как генератор электроэнергии представляет собой достаточно универсальное устройство, имеющее возможность регулировки величины и направления получаемой ЭДС.

Физическое объяснение

Причина возникновения разницы температур (в случае эффекта Пельтье) заключается в энергетике контактных зон, образующихся в местах стыка двух разнородных веществ (висмута и сурьмы, например). Особенности этих образований могут быть представлены следующим образом:

  • Из-за различной концентрации положительных и отрицательных зарядов в границах полярных зон (в центре размещается одно вещество, по краям – другое) между ними образуются собственные разнонаправленные электрические поля;
  • При протекании тока через контакт, в котором направление внешней и внутренней ЭДС совпадают, на поддержание перемещения электронов (на совершение работы в поле той же полярности) будет расходоваться внутренняя энергия вещества. Из основ физики известно, что такое явление соответствует остыванию материала в этом месте;
  • Соответственно этому, во второй контактной зоне, где направление приложенной ЭДС противоположно внутреннему полю, электроны будут тормозиться, и внешнему источнику придётся затрачивать дополнительную энергию по их перемещению. Согласно тем же физическим законам, указанный эффект соответствует забору энергии или нагреву материала в точке стыковки (смотрите фото ниже).

Пограничные явления в зонах Пельтье

Обратите внимание! Напряжённости таких полевых образований максимальны на пограничных участках двух неоднородных сред (полупроводников разной проводимости, например), вследствие чего здесь этот эффект проявляется с особой силой.

Среди работающих по этому принципу устройств наиболее известны термические модули (ТЭМ), состоящие из разных типов полупроводников с размещённой между ними медной токопроводящей прокладкой.

Особенности функционирования ТЭМ

Принцип действия и конструкция

При рассмотрении особенностей функционирования ТЭМ, работающих по тому же принципу, что генератор Пельтье, необходимо обратить внимание на следующие моменты:

  • В одном таком элементе имеется четыре перехода, которые образуются в пограничных зонах между краями металлической прокладки и двумя разнородными полупроводниковыми пластинами;
  • При образовании замкнутой цепочки поток электронов перемещается по направлению от минуса источника питания к его плюсу, проходя через каждый переход;
  • На границе первого по порядку барьера (полупроводник p-типа – медь) разогнанные во внешнем поле электроны переходят в состояние с меньшими энергиями разгона, вследствие чего происходит тепловыделение;
  • На следующем переходе наблюдается поглощение энергии (то есть охлаждение материала), что объясняется её расходом на работу по перемещению из зоны проводимости типа «p»;
  • На третьем пограничном переходе они попадают в зону полупроводника «n» со значительно большей, чем в прокладке из металла энергией, из-за чего здесь наблюдается её поглощение. Это приводит к охлаждению материала полупроводника на границе данного стыкового образования;
  • В последнем переходе вследствие попадания электронов в зону с меньшими энергиями наблюдается обратный процесс, связанный с тепловыделением.

Какой генератор потянет инверторный сварочный аппарат

Поскольку каждый из рассмотренных барьеров в границах ТЭМ располагается в разных плоскостях, такая конструкция с одной из сторон будет иметь более низкую температуру, а с другой – более высокую. На их основе создаются недорогие и лёгкие термогенераторы.

Дополнительная информация. В большинстве промышленных образцов ТЭМ функцию полупроводников выполняют соединения кремния и висмута.

В готовом к практическому использованию элементе содержится большое количество рассмотренных ранее переходов, что позволяет получать вполне ощутимые по величине температурные перепады. Используя обратный эффект (охлаждая одну из его сторон и нагревая другую) удаётся получить электрогенератор, энергии от которого будет хватать для зарядки мобильного телефона, например.

Достоинства и недостатки

К преимуществам модулей типа ТЭМ, используемых в режимах охлаждения и нагрева, можно отнести их универсальность, небольшие габариты и лёгкость, что особо важно в походных условиях.

Их существенным недостатком является высокая стоимость, сравнительно низкий КПД (всего 2-3%), а также необходимость в стороннем источнике, позволяющем получить требуемый перепад температур.

Обратите внимание! Все перечисленные достоинства и недостатки относятся и к элементам ТЭМ, используемым как термоэлектрогенератор (смотрите рисунок ниже).

Несмотря на присущие им недостатки, все эти изделия довольно часто применяются в различных сферах, где уровень энергозатрат не имеет решающего значения.

Самостоятельное изготовление

Комплект необходимых деталей

Генератор на неодимовых магнитах

Перед тем, как собрать ТЭГ Пельтье своими руками, обязательно нужно учесть следующие важные моменты:

  • Для получения электричества за счёт разницы температур подходят далеко не все представленные ранее модули ТЭМ, а лишь те из них, что рассчитаны на нагрев до 300-4000 градусов;
  • Определенный запас по температуре гарантирует, что преобразовательные пластины не выйдут из строя при случайном перегреве рабочих контактов;
  • Из всего многообразия представленных изделий предпочтение следует отдать элементам типа ТЕС1-12712, изготавливаемых в виде квадратов с разными размерами сторон: от 40 до 60 мм (смотрите рисунок ниже).

Дополнительная информация. Для сборки устройства, рассчитанного на минимум потребляемой мощности, вполне может хватить одного элемента с максимальным размером.

Помимо этого, для изготовления генератора потребуется электронный преобразователь, позволяющий поддерживать выходное напряжение на уровне 5 Вольт. Необходимость в этой схеме объясняется тем, что генерируемая системой ЭДС непостоянна, так как разность температур всё время меняет своё значение при нагреве и охлаждении отдельных зон.

Стабилизатор напряжения придётся использовать фирменный (самостоятельно изготовить его могут только профессионалы). Для заявленных целей подойдёт устройство от зарубежного производителя марки «MAX 756» или отечественные изделия (3.3В/5В ЕК-1674), оснащённые USB разъёмом.

В качестве нагревателя могут использоваться как костёр (мини-печка), так и свеча, сухой спирт или самодельная лампа. Роль охладителя на природе чаще всего играет холодная вода, а в зимнее время – снег.

Сборка

Для формирования сред с разной температурой потребуются небольшие металлические ёмкости типа кружек или кастрюль из дюралюминия с отпиленными ручками. По своему размеру посуда подбирается так, чтобы одну ёмкость можно было вставить в другую, и чтобы между стенками оставался зазор, достаточный для размещения элементов TEC (они крепятся с двух сторон на термическую пасту).

Затем к каждой из сторон надёжно закреплённого модуля припаиваются хорошо изолированные провода, ведущие к преобразователю (стабилизатору). Для повышения отдачи системы (её КПД) днища металлических ёмкостей, непосредственно контактирующих с элементами ТЭГ, предварительно полируются, а на их донные части наносится тонкий слой термостойкого герметика (фото ниже).

Самодельный термогенератор

Последняя операция обеспечит концентрацию тепла в зоне расположения модуля и не позволит ему рассеиваться на близко расположенных охлаждаемых деталях.

Для проверки работоспособности получившейся конструкции во внутреннюю (меньшую по объёму) ёмкость наливается вода, или закладывается снег, после чего она ставится на огонь.

По истечении некоторого времени можно будет проверить наличие выходного напряжения 5 Вольт посредством мультиметра.

В заключение отметим, что из-за не очень высокого КПД этого устройства применять его в походе целесообразно только с целью зарядки телефона или для энергоснабжения не очень мощного фонарика с подсевшей батарейкой. Благо, что на природе имеются все условия, необходимые для создания нужной разности температур (холодная вода из реки и тепло от костра).

Видео

Источник: https://amperof.ru/elektropribory/termoelektricheskij-generator.html

Ссылка на основную публикацию