Беспроводная передача электричества: теория, видео

Беспроводная передача электричества: теория, видеоКогда компания Apple представила свое первое беспроводное зарядное устройство для сотовых телефонов и гаджетов, многие посчитали это революцией и огромным скачком вперед в беспроводных способах передачи энергии.

Но были ли они первопроходцами или еще до них, кому-то удавалось проделать нечто похожее, правда без должного маркетинга и пиара? Оказывается были, притом очень давно и изобретателей таких было множество.

Так еще в далеком 1893г прославленный Никола Тесла, продемонстрировал изумленной публике свечение люминесцентных ламп. При том, что все они были без проводов.Беспроводная передача электричества: теория, видео

Сейчас такой фокус может повторить любой школьник, выйдя в чистое поле и встав с лампой дневного света под линию высокого напряжения от 220кв и выше.Беспроводная передача электричества: теория, видео

Чуть попозже, Тесла уже сумел зажечь таким же беспроводным способом фосфорную лампочку накаливания.Беспроводная передача электричества: теория, видео

В России в 1895г А.Попов показал в работе первый в мире радиоприемник. А ведь по большому счету это тоже является беспроводной передачей энергии.

Самый главный вопрос и одновременно проблема всей технологии беспроводных зарядок и подобных методов заключается в двух моментах:

  • как далеко можно передать электроэнергию таким способом

Для начала давайте разберемся, какую мощность имеют приборы и бытовая техника нас окружающие. Например для телефона, смартчасов или планшета требуется максимум 10-12Вт.Беспроводная передача электричества: теория, видео

У ноутбука запросы уже побольше — 60-80Вт. Это можно сравнить со средней лампочкой накаливания. А вот бытовая техника, особенно кухонная, кушает уже несколько тысяч ватт.Беспроводная передача электричества: теория, видео

Поэтому очень важно не экономить с количеством розеток на кухне.Беспроводная передача электричества: теория, видео

Так какие же методы и способы для передачи эл.энергии без применения кабелей или любых других проводников, придумало человечество за все эти годы. И самое главное, почему они до сих пор не внедрены столь активно в нашу жизнь, как того хотелось бы.

Взять ту же самую кухонную технику. Давайте разбираться подробнее.

Самый легко реализуемый способ — использование катушек индуктивности.

Здесь принцип очень простой. Берутся 2 катушки и размещаются недалеко друг от друга. На одну из них подается питание. Другая играет роль приемника.Беспроводная передача электричества: теория, видео

Когда в источнике питания регулируется или изменяется сила тока, на второй катушке магнитный поток автоматически также изменяется. Как гласят законы физики, при этом будет возникать ЭДС и она будет напрямую зависеть от скорости изменения этого потока.

Казалось бы все просто. Но недостатки портят всю радужную картинку. Минусов три:

Данным способом вы не передадите большие объемы и не сможете подключить мощные приборы. А попытаетесь это сделать, то просто поплавите все обмотки.Беспроводная передача электричества: теория, видео

Даже не задумывайтесь здесь о передаче электричества на десятки или сотни метров. Такой способ имеет ограниченное действие.

Чтобы физически понять, насколько все плохо, возьмите два магнита и прикиньте, как далеко их нужно развести, чтобы они перестали притягиваться или отталкиваться друг от друга. Вот примерно такая же эффективность и у катушек.

Беспроводная передача электричества: теория, видео

Можно конечно исхитриться и добиться того, чтобы эти два элемента всегда были близко друг от друга. Например электромобиль и специальная подзаряжающая дорога.

Но в какие суммы выльется строительство таких магистралей.

Еще одна проблема это низкий КПД. Он не превышает 40%. Получается, что таким способом передать много эл.энергии на большие расстояния вы не сможете.

Тот же Н.Тесла указал на это еще в 1899г. Позже он перешел на эксперименты с атмосферным электричеством, рассчитывая в нем найти разгадку и решение проблемы.

Однако какими бы не казались бесполезными все эти штуки, с их помощью до сих пор можно устраивать красивые светомузыкальные представления.

Или подзаряжать технику гораздо большую чем телефоны. Например электрические велосипеды.

Но как же передать больше энергии на большее расстояние? Задумайтесь, в каких фильмах подобную технологию мы видим очень часто.

Первое что приходит на ум даже школьнику — это «Звездные войны», лазеры и световые мечи.

Безусловно, с их помощью можно передать большое количество эл.энергии на очень приличные расстояния. Но опять все портит маленькая проблемка.

К нашему счастью, но несчастью для лазера, на Земле есть атмосфера. А она как раз таки хорошо глушит и кушает большую часть всей энергии лазерного излучения.

Поэтому с данной технологией нужно идти в космос. На Земле также были попытки и эксперименты по проверке работоспособности метода.

Nasa даже устраивали состязания по лазерной беспроводной передаче энергии с призовым фондом чуть менее 1млн.$.

В итоге выиграла компания Laser Motive. Их победный результат — 1км и 0,5квт переданной непрерывной мощности. Правда при этом в процессе передачи, ученые потеряли 90% всей изначальной энергии.

Но все равно, даже с КПД в десять процентов, результат посчитали успешным.

Напомним, что у простой лампочки полезной энергии, которая идет непосредственно на свет, и того меньше. Поэтому из них и выгодно изготавливать инфракрасные обогреватели. 

Неужели нет другого реально работающего способа передать электричество без проводов. Есть, и его изобрели еще до попыток и детских игр в звездные войны.

Оказывается, что специальные микроволны с длиной в 12см (частота 2,45Ггц), являются как бы прозрачными для атмосферы и она им не мешает в распространении.

Какой бы ни была плохой погода, при передаче с помощью микроволн, вы потеряете всего пять процентов! Но для этого вы сначала должны преобразовать электрический ток в микроволны, затем их поймать и опять вернуть в первоначальное состояние.

Первую проблему ученые решили очень давно. Они изобрели для этого специальное устройство и назвали его магнетрон.

Причем это было сделано настолько профессионально и безопасно, что сегодня каждый из вас у себя дома имеет такой аппарат. Зайдите на кухню и обратите внимание на свою микроволновку.

У нее внутри стоит тот самый магнетрон с КПД равным 95%.

Но вот как сделать обратное преобразование? И тут было выработано два подхода:

В США еще в шестидесятых годах ученый У.Браун придумал антенну, которая и выполняла требуемую задачу. То есть преобразовывала падающее на него излучение, обратно в электрический ток.

Он даже дал ей свое название — ректенна.

После изобретения последовали опыты. И в 1975г при помощи ректенны, было передано и принято целых 30 квт мощности на расстоянии более одного километра. Потери при передаче составили всего 18%.

Спустя почти полвека, этот опыт до сих так никто и не смог превзойти. Казалось бы метод найден, так почему же эти ректенны не запустили в массы?

И тут опять всплывают недостатки. Ректенны были собраны на основе миниатюрных полупроводников. Нормальная работа для них — это передача всего нескольких ватт мощности.

А если вы захотите передать десятки или сотни квт, то готовьтесь собирать гигантские панели.

И вот тут как раз таки появляются не разрешимые сложности. Во-первых, это переизлучение.

Мало того, что вы потеряете из-за него часть энергии, так еще и приблизиться к панелям без потери своего здоровья не сможете.

Вторая головная боль — нестабильность полупроводников в панелях. Достаточно из-за малой перегрузки перегореть одному, и остальные выходят из строя лавинообразно, подобно спичкам.

В СССР все было несколько иначе. Не зря наши военные были уверены, что даже при ядерном взрыве, вся зарубежная техника сразу выйдет из строя, а советская нет. Весь секрет тут в лампах.

В МГУ два наших ученых В.Савин и В.Ванке, сконструировали так называемый циклотронный преобразователь энергии. Он имеет приличные размеры, так как собран на основе ламповой технологии.

Внешне это что-то вроде трубки длиной 40см и диаметром 15см. КПД у этого лампового агрегата чуть меньше, чем у американской полупроводниковой штуки — до 85%.

Но в отличие от полупроводниковых детекторов, циклотронный преобразователь энергии имеет ряд существенных достоинств:

  • невысокая цена изготовления

Однако несмотря на все вышесказанное, во всем мире передовым считаются именно полупроводниковые методы реализации проектов. Здесь тоже присутствует свой элемент моды.

После первого появления полупроводников, все резко начали отказываться от ламповых технологий. Но практические испытания говорят о том, что это зачастую неправильный подход.

Конечно, ламповые сотовые телефоны по 20кг или компьютеры, занимающие целые комнаты никому не интересны.

Но иногда только проверенные старые методы, могут нас выручить в безвыходных ситуациях. 

В итоге на сегодняшний день, мы имеем три возможности передать энергию без проводов. Самый первый из рассмотренных ограничен как расстоянием, так и мощностью.

Но этого вполне хватит, чтобы зарядить батарейку смартфона, планшета или чего-то побольше. КПД хоть и маленький, но метод все же рабочий.

Способ с лазерами хорош только в космосе. На поверхности земли это не очень эффективно. Правда когда другого выхода нет, можно воспользоваться и им.

Зато микроволны дают полет для фантазий. С их помощью можно передавать энергию:

  • с поверхности земли на космический корабль или спутник
  • и наоборот, со спутника в космосе обратно на землю

За все последние годы, согласно вышеприведенным технологиям, ученые пытались и пытаются реализовать всего два проекта.

Первый из них начинался очень обнадеживающе. В 2000-х годах на о.Реюньон, возникла потребность в постоянной передаче 10кВт мощности на расстояние в 1км.

Горный рельеф и местная растительность, не позволяли проложить там ни воздушные линии электропередач, ни кабельные.

Все перемещения на острове в эту точку осуществлялось исключительно на вертолетах.

Для решения проблемы в одну команду были собраны лучшие умы из разных стран. В том числе и ранее упоминавшиеся в статье, наши ученые из МГУ В.Ванке и В.Савин.

Однако в момент, когда должны были приступать к практической реализации и строительству передатчиков и приемников энергии, проект заморозили и остановили. А с началом кризиса в 2008 году и вовсе забросили.

На самом деле это очень обидно, так как теоретическая работа там была проделана колоссальная и достойная реализации.

Второй проект, выглядит более безумным чем первый. Однако на него выделяются реальные средства. Сама идея была высказана еще в 1968г физиком из США П.Глэйзером.

Он предложил на тот момент не совсем нормальную идею — вывести на геостационарную орбиту в 36000 км над землей огромный спутник. На нем расположить солнечные панели, которые будут собирать бесплатную энергию солнца.

  • Затем все это должно преобразовываться в пучок СВЧ волн и передаваться на землю.
  • Этакая «звезда смерти» в наших земных реалиях.
  • На земле пучок нужно поймать гигантскими антеннами и преобразовать в электричество.

Насколько огромны должны быть эти антенны? Представьте, что если спутник будет в диаметре 1км, то на земле приемник должен быть в 5 раз больше — 5км (размер Садового кольца).

Но размеры это всего лишь малая часть проблем. После всех расчетов оказалось, что такой спутник вырабатывал бы электричество мощностью в 5ГВт. При достижении земли оставалось бы всего 2ГВт. К примеру Красноярская ГЭС дает 6ГВт.

Поэтому его идею рассмотрели, посчитали и отложили в сторонку, так как все изначально упиралось в цену. Стоимость космического проекта в те времена вылезла за 1трлн.$.

Но наука к счастью не стоит на месте. Технологии совершенствуются и дешевеют. Сейчас разработку такой солнечной космической станции уже ведут несколько стран. Хотя в начале двадцатого века для беспроводной передачи электроэнергии хватало всего одного гениального человека.

Общая цена проекта упала от изначальной до 25млрд.$. Остается вопрос — увидим ли мы в ближайшее время его реализацию?

К сожалению никто вам четкого ответа не даст. Ставки делают только на вторую половину нынешнего столетия. Поэтому пока давайте довольствоваться беспроводными зарядками для смартфонов и надеяться что ученым удастся повысить их КПД. Ну или в конце концов на Земле родится второй Никола Тесла.

Источник: https://domikelectrica.ru/3-sposoba-peredachi-energii-bez-provodov/

Почему мы не используем технологию Теслы беспроводной передачи электроэнергии?

Во-первых, мы должны взглянуть на патентную модель Теслы. Сам Тесла утверждал, что эта технология не имеет никакого отношения к радио.

Готовясь к посещению ведомства, Тесла установил в своей лаборатории пару маленьких трансформаторов, а затем соединил высоковольтные выводы вместе, используя …

флуоресцентную трубку! Длинная стеклянная трубка была откачана почти до вакуума, и образовывала плазму при включении одного трансформатора. Второй трансформатор понижал напряжение, чтобы на нем могли работать обычные вещи, типа освещения и двигателей.

Другими словами, он использовал неоновую вывеску в качестве линии электропередачи. Нет проводов. Просто стеклянная трубка, полная плазмы.

Беспроводная передача электричества: теория, видео

Это было его великое изобретение. Это была модель, которую руководитель Патентного Бюро Америки пришел осмотреть в лаборатории Теслы в Нью-Йорке. Устройство, которое убедило его позволить Тесле продвинуть патент на беспроводную передачу электроэнергии.

Итак, как сказал Тесла, это никак не связано с радио. Закон обратных квадратов не ограничивает его, и даже не применяется к технологии вообще. Но его проблемы были намного сложнее! Тесла предлагал использовать ультра-высокое напряжение для создания вертикального плазменного столба, который соединяется с… САМИМ НЕБОМ, МУА-ХА-ХА!

Нет, серьезно.

Плазма является проводником, и Тесла планировал ионизировать небо (если оно еще не было ионизировано, и оказалось, что оно уже само по себе ионизировано). Тесла, очевидно, планировал создать вертикальный проводящий плазменный поток, столб, который будет действовать как огромный кабель, чтобы соединить гигантскую катушку Тесла с проводящей ионосферой высоко в небе.

Затем он будет питать ионосферу мегавольтами переменного тока 5-10 кГц. И тогда в любой точке Земли люди могли поднять металлическую пластину на деревянном столбе, подключить ее к заземленному резонансному трансформатору и привести в действие электрические часы и, возможно, несколько лампочек. (Я имею в виду люминесцентные лампы.

Не те расточительные, неэффективные лампы накаливания из угольной электростанции Эдисона.)

Так почему же никто не сделал этого после того, как Тесла перестал получать финансирование? Кто-то пытался, еще в 1920 году. Вот их предложение, найденное в журнале Electrical Experimenter. Оказалось, не работает. Ультрафиолетовые прожекторы не могут образовывать достаточно длинные ионизированные потоки:

Беспроводная передача электричества: теория, видео

Сравните вышесказанное с рекламным искусством Теслы с начала 1900-х годов ниже. Обратите особое внимание на дирижабль с лучами плазменного проводника, направленными вверх и вниз.

Также обратите внимание на город на заднем плане, с похожими гигантскими «плазменными антеннами», выступающими вверх.

Но все в то время просто предполагали, что это были прожекторы! Да, это типичный Тесла, готовящийся к будущим патентным битвам, выставляя свою технологию на всеобщее обозрение, но все секреты в безопасности, потому что никто не знает, на что они смотрят.

Даже у самолетов Теслы есть плазменные лучи. Это имеет смысл, если вы используете металлический фюзеляж и крылья в качестве емкостной приемной пластины, поскольку резонансная катушка внутри любого летательного аппарата также нуждается в проводящем соединении с землей.

Беспроводная передача электричества: теория, видео

Итак, почему никто не финансировал это? Даже не создал небольшую версию? Все просто. Никто не знает, как создать ста(100!!)-мегавольтный, 30-ти километровый вертикальный плазменный поток. Гигантский потрескивающий луч непрерывной молнии.

Все, что меньше, не будет работать. «Настольная модель» не будет работать, если у вас также не будет настольной модели атмосферы Земли, включая изолирующий воздух и проводящую ионосферу выше. Тесла никогда не раскрывал, как он собирается это сделать.

Ученые сегодня предполагают, что это невозможно.

Интересно, что репортер расспросил Теслу по этому поводу, спросив, будут ли в его системе использованы ультрафиолетовые лучи. Тесла ушел от ответа.

Позже, в 1915 году, Тесла описал историю изобретения, сказав, что в течение многих лет он пытался заставить его работать с помощью ультрафиолетовых прожекторов, но он потерпел тотальную неудачу, пока не отказался от дуговых ламп и не обнаружил совершенно другой метод.

Он отправился в Колорадо из-за высоты и низкого давления воздуха, но затем нашел способ заставить его работать на уровне моря. Он утверждал, что его новый метод позволил ему освещать небо ночью, как если бы это была гигантская люминесцентная лампа.

Действительно ли он сделал это? Нам понадобятся свидетельства очевидцев из того места, где оно предположительно произошло: 1899, Колорадо-Спрингс. Возможно, он также работал в Wardenclyffe, так как упомянул, что если бы местные жители не ложились спать так рано, они бы действительно что-то увидели. Плазменные лучи высотой 30 км? Или гигантское сияние по небу, как изображено другом Теслы Хьюго Гернсбеком в «Электрическом экспериментаторе» от мая 1913?

Беспроводная передача электричества: теория, видео

Тем временем Музей Теслы в Белграде недавно опубликовал концепцию этого художника о беспроводной системе Тесла в действии – запитывание судов в море. Сравните с двумя приведенными выше иллюстрациями.

Технология Теслы будет работать только с плазменными лучами. Получить которые можно только в теории. В наше время.

Беспроводная передача электричества: теория, видео

И еще, последнее замечание. 3-х фазная электросеть, каковы процентные потери? Какие потери должна преодолеть система Теслы? Я нахожу различные цифры. По данным МОЭСК и Россетей, 8-20% электрической энергии от генераторов тратится на нагрев проводов и потери при трансформации. И это в новых сетях. В старых может доходить до 30-40%.

Тесла утверждал, что его измерения в Колорадо Спрингс показывают 3% потерь для его «Мировой системы». Может быть, это было преувеличено. Но даже в этом случае, потерь меньше, затрат на строительство сетей меньше, и вообще. Разве не здорово было бы повсюду наблюдать плазменные потоки энергии, как в Звездных Войнах.

Работа электролабораторий перешла бы на совершенно другой уровень=)

Источник: https://t-ln.ru/articles/pochemu-my-ne-ispolzuem-tekhnologiyu-tesly-besprovodnoy-peredachi-elektroenergii/

Беспроводная передача электричества: теория, видео — Asutpp

Многие годы ученые бьются над вопросом минимизации электрических расходов. Есть разные способы и предложения, но все, же самой известной теорией является беспроводная передача электричества. Предлагаем рассмотреть, как она выполняется, кто является её изобретателем и почему пока что её не воплотили в жизнь.

Теория

Беспроводное электричество – это буквально передача электрической энергии без проводов.

Люди часто сравнивают беспроводную передачу электрической энергии с передачей информации, например, радио, сотовые телефоны, или Wi-Fi доступ в Интернет.

Основное различие заключается в том, что с радио-или СВЧ-передач – это технология, направленная на восстановление и транспортировку именно информации, а не энергии, которая изначально была затрачена на передачу.

Беспроводной электроэнергии является относительно новой областью технологии, но достаточно динамично развивающейся. Сейчас разрабатываются методы, как эффективно и безопасно передавать энергию на расстоянии без перебоев.

Как работает беспроводное электричество

Основная работа основана именно на магнетизме и электромагнетизме, как и в случае с радиовещанием.

Беспроводная зарядка, также известна как индуктивная зарядка, основана на нескольких простых принципах работы, в частности технология требует наличия двух катушек. Передатчика и приемника, которые вместе генерируют переменное магнитное поле непостоянного тока.

В свою очередь это поле вызывает напряжение в катушке приемника; это может быть использовано для питания мобильного устройства или зарядки аккумулятора.

Если направить электрический ток через провод, то вокруг кабеля создается круговое магнитное поле. Несмотря на то, что магнитное поле воздействует и на петлю, и на катушку сильнее всего оно проявляется именно на кабеле.

Когда возьмете второй моток проволоки, на который не поступает электрический ток, проходящий через него, и место, в которое мы установим катушку в магнитном поле первой катушки, электрический ток от первой катушки будет передаваться через магнитное поле и через вторую катушку, создавая индуктивную связь.

Как пример возьмем электрическую зубную щетку.

В ней зарядное устройство подключено к розетке, которая отправляет электрический ток на витой провод внутри зарядного устройства, создающего магнитное поле.

Существует вторая катушка внутри зубной щетки, когда ток начинает поступать и на неё, благодаря образовавшемуся МП, начинается заряд щетки без её непосредственного подключения к сети питания 220 В.

История

Беспроводная передача энергии в качестве альтернативы передачи и распределения электрических линий, впервые была предложена и продемонстрирована Никола Тесла.

В 1899 году Тесла презентовал беспроводную передачу на питание поля люминесцентных ламп, расположенных в двадцати пяти милях от источника питания без использования проводов.

Но в то время было дешевле сделать проводку из медных проводов на 25 миль, а не строить специальные электрогенераторы, которых требует опыт Тесла. Патент ему так и не выдали, а изобретение осталось в закромах науки.

В то время как Тесла был первым человеком, который смог продемонстрировать практические возможности беспроводной связи еще в 1899 году, сегодня, в продаже есть совсем немного приборов, это беспроводные щетки наушники, зарядки для телефонов и прочее.

Технология беспроводной связи

Беспроводной передачи энергии включает в себя передачу электрической энергии или мощности на расстоянии без проводов. Таким образом, основная технология лежит на концепции электроэнергии, магнетизма и электромагнетизма.

Магнетизм

Это фундаментальная сила природы, которая провоцирует определенные типы материала притягивать или отталкивать друг друга. Единственными постоянными магнитами считаются полюса Земли.

Ток потока в контуре генерирует магнитные поля, которые отличаются от осциллирующих магнитных полей скоростью и временем, потребным для генерации переменного тока (AC).

Силы, которые при этом появляются, изображает схема ниже.

Беспроводная передача электричества: теория, видеоТак появляется магнетизм

Электромагнетизм – это взаимозависимость переменных электрических и магнитных полей.

Магнитная индукция

Если проводящий контур подключен к источнику питания переменного тока, он будет генерировать колебательное магнитное поле внутри и вокруг петли. Если второй проводящий контур расположен достаточно близко, он захватит часть этого колеблющегося магнитного поля, которое в свою очередь порождает или индуцирует электрический ток во второй катушке.

Видео: как происходит беспроводная передача электричества

Таким образом, происходит электрическая передача мощности от одного цикла или катушки к другой, что известно как магнитная индукция. Примеры такого явления используются в электрических трансформаторах и генератора.

Это понятие основано на законах электромагнитной индукции Фарадея.

Там, он утверждает, что, когда есть изменение магнитного потока, соединяющегося с катушкой ЭДС, индуцированного в катушке, то величина равна произведению числа витков катушки и скорости изменения потока.

Беспроводная передача электричества: теория, видеоЭлектрический трансформатор

Мощностная муфта

  • Эта деталь необходима, когда одно устройство не может передавать энергию на другой прибор.
  • Магнитная связь генерируется, когда магнитное поле объекта способно индуцировать электрический ток с другими устройствами в поле его досягаемости.
  • Два устройства, как говорят, взаимно индуктивно-связанной или магнитную связь, когда они выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода посредством электромагнитной индукции. Это связано с взаимной индуктивности

Технология

Беспроводная передача электричества: теория, видеоПринцип индуктивной связи

Два устройства, взаимно индуктивно-связанные или имеющие магнитную связь, выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода, производится посредством электромагнитной индукции. Это связано с взаимной индуктивностью.
Индуктивная связь является предпочтительной из-за её способности работать без проводов, а также устойчивости к ударам.

Резонансная индуктивная связь является сочетанием индуктивной связи и резонанса. Используя понятие резонанса можно заставить два объекта работать зависимо от сигналов друг друга.

Беспроводная передача электричества: теория, видеоКонцепция резонанса индуктивной связи

Как видно из схемы выше, резонанс обеспечивает индуктивность катушки. Конденсатор подключен параллельно к обмотке. Энергия будет перемещаться назад и вперед между магнитным полем, окружающим катушку и электрическим полем вокруг конденсатора. Здесь потери на излучение будет минимальными.

Существует также концепция беспроводной ионизированной связи.

Она тоже воплотима в жизнь, но здесь необходимо приложить немного больше усилий. Эта техника уже существует в природе, но вряд ли есть целесообразность ее реализации, поскольку она нуждается в высоком магнитном поле, от 2,11 М /м [10] .

Её разработал гениальный ученый Ричард Волрас, разработчик вихревого генератора, который посылает и передает энергию тепла на огромные расстояния, в частности при помощи специальных коллекторов. Самой простой пример такой связи – это молния.

Плюсы и минусы

Конечно, у этого изобретения есть свои преимущества перед проводными методиками, и недостатки. Предлагаем их рассмотреть.

К достоинствам относятся:

  1. Полное отсутствие проводов;
  2. Не нужны источники питания;
  3. Необходимость батареи упраздняется;
  4. Более эффективно передается энергия;
  5. Значительно меньше нужно технического обслуживания.

К недостаткам же можно отнести следующее:

  • Расстояние ограничено;
  • магнитные поля не так уж и безопасны для человека;
  • беспроводная передача электричества, с помощью микроволн или прочих теорий практически неосуществима в домашних условиях и своими руками;
  • высокая стоимость монтажа.

Источник: https://www.asutpp.ru/besprovodnaya-peredacha-elektrichestva.html

Беспроводная передача электроэнергии, история становления

Беспроводная передача электричества: теория, видео

Многие годы ученые бьются над вопросом минимизации электрических расходов. Есть разные способы и предложения, но все, же самой известной теорией является беспроводная передача электроэнергии. Предлагаем рассмотреть, как она выполняется, кто является её изобретателем и почему пока что её не воплотили в жизнь.

Возможность передачи электроэнергии на расстояние впервые обнаружил Стивен Грей в 1720-е годы. В опытах Грея заряд передавался по шёлковому проводу на расстояние до 800 футов.

Закон открытый Андре Мари Ампером в 1820 году, о взаимодействии электрических токов, положил начало дальнейшему развитию науки об электричестве и магнетизме.

Спустя 11 лет, Майкл Фарадей экспериментально установил, что порождаемое электрическим током меняющееся магнитное поле способно индуцировать электрический ток в другом проводнике. Так был создан первый электрический трансформатор.

В 1864 году Джеймс Клерк Максвелл окончательно систематизировал экспериментальные данные Фарадея, придав им форму точных математических уравнений. Благодаря которым была создана основа классической электродинамики, ведь эти уравнения описывали связь электромагнитного поля с электрическими токами и зарядами. А следствием этого должно было быть существование электромагнитных волн.

Беспроводная передача электроэнергии, первые опыты

В 1888 году Генрих Герц экспериментально подтвердил существование электромагнитных волн, предсказанных Максвеллом. Его искровой передатчик с прерывателем на основе катушки Румкорфа мог производить электромагнитные волны частотой до 0,5 гигагерц. Которые могли быть приняты несколькими приемниками, настроенными в резонанс с передатчиком. 

Беспроводная передача электричества: теория, видео

   Генрих Герц и его творение

Приемники могли располагаться на расстоянии до 3 метров, и при возникновении искры в передатчике, искры возникали и в приемниках. Так были проведены первые опыты по беспроводной передаче электрической энергии с помощью электромагнитных волн.

В 1891 году Никола Тесла, занимаясь исследованием переменных токов высокого напряжения и высокой частоты, приходит к выводу, что крайне важно для конкретных целей подбирать как длину волны, так и рабочее напряжение передатчика, и совсем не обязательно делать частоту слишком высокой. Ученый отмечает, что нижняя граница частот и напряжений, при которых ему на тот момент удалось добиться наилучших результатов, — от 15000 до 20000 колебаний в секунду при потенциале от 20000 вольт.

Беспроводная передача электричества: теория, видео

   Никола Тесла

Тесла получал ток высокой частоты и высокого напряжения, применяя колебательный разряд конденсатора. Он заметил, что данный вид электрического передатчика пригоден как для производства света, так и для передачи электроэнергии для производства света.

В период с 1891 по 1894 годы ученый многократно демонстрирует беспроводную передачу, и свечение вакуумных трубок в высокочастотном электростатическом поле. При этом отмечая, что энергия электростатического поля поглощается лампой, преобразуясь в свет.

А энергия электромагнитного поля, используемая для электромагнитной индукции с целью получения аналогичного результата, в основном отражается, и лишь малая ее доля преобразуется в свет. Даже применяя резонанс при передаче с помощью электромагнитной волны, значительного количества электрической энергии передать не удастся, утверждал ученый.

Его целью в этот период работы была передача именно большого количества электрической энергии беспроводным способом.

  • Вплоть до 1897 года, параллельно с работой Тесла, исследования электромагнитных волн ведут: Джагдиш Боше в Индии, Александр Попов в России, и Гульельмо Маркони в Италии.
  • Вслед за публичными лекциями Тесла, Джагдиш Боше выступает в ноябре 1894 года в Калькутте с демонстрацией беспроводной передачи электричества, там он зажигает порох, передав электрическую энергию на расстояние.
  • После Боше, а именно 25 апреля 1895 года, Александр Попов, используя азбуку Морзе, передал первое радиосообщение, и эта дата (7 мая по новому стилю) отмечается теперь ежегодно в России как «День Радио».

В 1896 году Маркони, приехав в Великобританию, продемонстрировал свой аппарат, передав с помощью азбуки Морзе сигнал на расстояние 1,5 километра с крыши здания почтамта в Лондоне на другое здание. После этого он усовершенствовал свое изобретение и сумел передать сигнал по Солсберийской равнине уже на расстояние 3 километра.

Успешная беспроводная передача электроэнергии

Тесла в 1896 году удачно передает и принимает сигналы на расстоянии между передатчиком и приемником примерно в 48 километров. Однако значительного количества электрической энергии передать на большое расстояние пока никому из исследователей не удалось.

 Экспериментируя в Колорадо-Спрингс, в 1899 году Тесла напишет: «Несостоятельность метода индукции представляется огромной по сравнению с методом возбуждения заряда земли и воздуха».

Это станет началом исследований ученого, направленных на передачу электроэнергии на значительные расстояния без использования проводов.

В январе 1900 года Тесла сделает в своем дневнике запись об успешной передаче энергии на катушку, «вынесенную далеко в поле», от которой была запитана лампа. А самым грандиозным успехом ученого станет запуск 15 июня 1903 года башни Ворденклифф на Лонг-Айленде.

Она была предназначена для передачи электрической энергии на значительное расстояние в больших количествах без проводов. Заземленная вторичная обмотка резонансного трансформатора, увенчанная медным сферическим куполом, должна была возбудить заряд земли и проводящие слои воздуха, чтобы стать элементом большой резонансной цепи.

 Так ученому удалось запитать 200 ламп по 50 Ватт на расстоянии около 40 километров от передатчика. Однако, исходя из экономической целесообразности, финансирование проекта было прекращено Морганом. Который с самого начала вкладывал деньги в проект с целью получить беспроводную связь.

А передача бесплатной энергии в промышленных масштабах на расстояние его, как бизнесмена, категорически не устраивала. В 1917 году башня, предназначенная для беспроводной передачи электрической энергии, была разрушена.

Так же читайте по теме:

   Передача электроэнергии по одному проводу, правда или нет.

   Беспроводная зарядка для телефона. Как устроена и работает?

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Источник: https://powercoup.by/elektroenergetika-v-mire/besprovodnaya-peredacha-elektroenergii

Беспроводная передача электроэнергии

Решить проблему беспроводной передачи электрической энергии на большие расстояния – давнишняя мечта человечества. Можно представить, насколько бы подешевела электроэнергия без затрат на токопроводную продукцию. Научно-техническая революция не стоит на месте. Есть надежда, что эта мечта сбудется в недалёком будущем. Тому свидетельствуют новые разработки в данной сфере.

Мечта человечества – беспроводная передача электроэнергии

История беспроводной передачи энергии

Великий французский физик Ампер в 1820 году путём многочисленных опытов пришёл к выводу о том, что магнитное поле может возбуждать в теле металла электрический ток. Так появился основополагающий закон Ампера.

Майкл Фарадей в 1831 открыл закон индукции, который стал базой для развития такой науки, как электромагнетизм.

Джеймс Максвелл после долгих экспериментов систематизировал свои наблюдения, квинтэссенцией которых в 1864 году стало уравнение Максвелла. Формула объясняла поведение электромагнитного поля.

Никола Тесла усовершенствовал аппарат для генерации электромагнитного поля, изобретённый Генрихом Герцем в 1888 году. На Всемирной выставке в 1893 г., состоявшейся в Чикаго, Тесла продемонстрировал свечение фосфорных лампочек без проводов.

Свой вклад в развитие беспроводной передачи энергии сделал русский учёный Александр Попов. В 1895 г. на заседании Русского физико-химического общества он показал изобретённый им детекторный радиоприёмник.

Далее вплоть до наших дней происходило патентование новых изобретений в области беспроводной передачи электрической энергии. Были произведены масса экспериментов, совершенно большое количество открытий. Последнее достижение в этой сфере – это передача электричества на большие расстояния без проводов с помощью технологии Wi-Fi. В 2017 году изобретён мобильный телефон без батареи.

Как это работает

Какие бывают счетчики электроэнергии Нева?

Беспроводное электричество базируется на таком явлении, как электромагнетизм. В работе участвуют две катушки из металлических проводов. Одна из них подключена к источнику тока, вокруг которой создаётся магнитное поле. Вторая катушка, воспринимая это поле, индуцирует в своей обмотке вторичный электрический ток.

Схема передачи электричества без проводов

Принципы передачи

Знакомство с пиковыми и другими зонами тарификации электроэнергии

В последних разработках учёных из США и Южной Кореи применялись магнитно-резонансные системы CMRS и DCRS.

Корейская технология оказалась более совершенной. Удалось передать электроэнергию на 5 метров.

Благодаря компактным дипольным катушкам DCRS, можно запитать всех потребителей в помещении средних размеров без проводов.

Важно! Несовершенство современной аппаратуры существенно ограничивает длину пути электричества по воздуху.

Несмотря на это, учёные всего мира заняты получением новых технологий, задача которых – передача энергии на расстоянии в десятки и сотни километров. Уже сегодня развиваются и претворяются в жизнь новые достижения науки в области доставки электроэнергии без проводных линий электропередач.

Технологии

Определение качества электроэнергии анализаторами

Наиболее перспективными направлениями в разработке новых методов и способов транспортировки электричества без материального контакта являются:

  • ультразвуковой способ;
  • метод электромагнитной индукции;
  • электростатическая индукция;
  • микроволновое излучение;
  • лазерный метод;
  • электропроводность Земли.

Ультразвуковой способ

Студентами Пенсильванского университета (США) на недавней выставке в 2011 году был продемонстрирован способ передачи электротока с помощью ультразвука.

Передатчик генерировал акустические волны в ультразвуковом диапазоне, приёмник преобразовывал их в электрический ток. В качестве носителя энергии ультразвук был выбран не случайно.

Его воздействие на организм человека абсолютно безвредно.

Несовершенство этого способа заключается в том, что КПД передачи очень низкий, нужны прямая видимость между абонентами и ограниченность расстояния (7-10 метров).

Метод электромагнитной индукции

Работа обыкновенного трансформатора даёт представление о том, как осуществляется передача электричества без проводов методом электромагнитной индукции. В процессе участвуют две катушки. Магнитное поле, возбуждаемое протекающим током по виткам первичной обмотки, индуцирует электрический поток во вторичной обмотке трансформатора.

Примерами использования эффекта электромагнитной индукции могут быть зарядные устройства смартфонов и электрические зубные щётки. Недостатком такого способа передачи энергии является непременная близость катушек. Даже при небольшом увеличении промежутка между обмотками большая часть энергии начинает распыляться в пространстве.

Один из видов электромагнитной индукции – это использование резонанса. Суть способа заключается в том, что приёмник и передатчик функционируют в одном частотном диапазоне. Передающее и приёмное устройства представляют собой соленоид с одним слоем витков. Генерирующий прибор оснащён конденсаторной схемой, с помощью которой он настраивается на частоту приёмника.

Демонстрация метода электромагнитной индукции

Электростатическая индукция

В основе метода заложен принцип прохождения энергии через тело диэлектрика. Способ называют ёмкостной связью. Генератор создаёт в ёмкости электрическое поле, которое возбуждает разницу потенциалов между двумя электродами потребителя.

Никола Тесла для демонстрации беспроводной лампы освещения использовал именно метод электростатической индукции. Лампа получала питание от переменного электрического поля высокой частоты. Она светилась ровно, независимо от её перемещения в пространстве комнаты.

Микроволновое излучение

Специалисты космотехники разработали способ передачи электроэнергии от орбитальных солнечных батарей на космические корабли с помощью радиосигнала микроволнового диапазона. Проблема этого метода состоит в том, что для приёма и передачи пучкового излучения требуются антенны с очень большой диафрагмой.

Учёные НАСА в 1978 году пришли к выводу, что для передачи микроволнового луча частотой 2,45 ГГц излучающая антенна должна иметь диаметр отражающей поверхности 1 км. Приёмная ректенна должна быть диаметром 10 км. Уменьшить эти размеры возможно путём использования сверхкоротких волн. Однако сигналы такого диапазона быстро поглощаются атмосферой или блокируются дождевыми осадками.

Обратите внимание! Безопасная плотность мощности излучаемой энергии равняется 1 мВт/см2. Этой норме отвечает антенна диаметром 10 км с передающей мощностью потенциала 750 МВт.

Лазерный метод

Передачу электроэнергии на большие расстояния без проводов с помощью лазера стали осуществлять сосем недавно. Идея состоит в том, что лазерный луч, несущий в себе энергетический потенциал, попадает на фотоэлемент приёмного устройства, где высокочастотное электромагнитное излучение преобразуется в электрический ток.

Лазерная технология передачи энергии, ранее применяемая в военной области, успешно внедряется в гражданскую сферу деятельности человека.

Разработки американских учёных привели к изобретению беспилотного летательного аппарата, получающего энергетическое питание от лазерного луча.

В 2006 году был продемонстрирован беспилотник, который мог летать в беспосадочном режиме, питаясь от лазерной установки.

В 2009 году был успешно осуществлён эксперимент в космосе по передаче энергии на один километр мощностью 500Вт.

Электропроводность Земли

Существует теория использования недр и океанов Земли для беспроводной передачи энергии. Электропроводимость гидросферы, залежей металлических руд может быть использована для передачи низкочастотного переменного тока. Электростатическая индукция диэлектрических тел может возникать в огромных залежах кварцевого песка и тому подобных минералов.

Передача электрического тока возможна также через воздушное пространство методом электростатической индукции. Никола Тесла в своё время выдвинул предположение, что в будущем появятся технологии, которые для передачи электроэнергии будут использовать землю, океанические воды и атмосферу планеты.

Всемирная беспроводная система

Впервые о Всемирной беспроводной системе передачи электроэнергии стало известно от великого учёного Теслы. В 1904 году он заявил, что создание ВБС, используя высокую электрическую проводимость плазмы и Земли, вполне осуществимо.

Реальные проекты в наши дни

Из всего того, что на сегодня предлагает рынок электротехники, относятся к беспроводной передаче электроэнергии зарядные устройства для смартфонов, электрические зубные щётки. В них используется принцип электромагнитной индукции.

Бесконтактная зарядка смартфона

В авиастроении началось серийное производство летательных беспилотных аппаратов, питающихся за счёт беспроводной передачи электричества. Небольшой микроволновый вертолёт с ректенной может подниматься на высоту до 15 метров над землёй. Появились беспилотники, которые могут летать в зоне видимости лазерного луча.

Китайский производитель бытовой техники Haier Group с 2010 года выпускает беспроводные LCD телевизоры.

Перспективы беспроводной передачи электричества

  • Сейчас ведутся исследовательские работы, и разрабатываются проекты создания электромобилей, которые будут передвигаться по дорожному покрытию с токопроводом, который индуцирует электрический ток в моторе транспорта.
  • Ряд передовых фирм заняты разработкой беспроводных источников питания, которые смогут снабжать электроэнергией всех потребителей в пределах одного помещения.
  • В перспективе появление трасс, состоящих из ряда беспроводных источников электричества, которые смогут обеспечить перемещение летательных аппаратов на большие расстояния.
  • С появлением новых материалов, усовершенствованных приборов и изобретений беспроводная передача электроэнергии в недалёком будущем охватит все сферы деятельности человека.

Видео

Источник: https://amperof.ru/teoriya/besprovodnaya-peredacha-elektroenergii.html

Ссылка на основную публикацию