Зависит ли сопротивление между уэ и катодом тиристора от полярности напряжения?

Как проверить тиристор, если вы полный чайник? Итак, обо всем по порядку.

Принцип работы тиристора

Принцип работы тиристора основан на принципе работы электромагнитного реле. Реле – это электромеханическое изделие, а тиристор – чисто электрическое. Давайте же рассмотрим принцип работы тиристора, а иначе как мы его тогда сможем проверить? Думаю, все катались на лифте ;-).

Нажимая кнопку на какой-нибудь этаж, электродвигатель лифта начинает свое движение, тянет трос с кабиной с вами  и  соседкой тетей Валей килограммов под двести и  вы перемещаетесь с этажа на этаж.

  Как  же так с помощью малюсенькой кнопочки мы подняли кабину с тетей Валей на борту?

В этом примере и основан принцип работы тиристора.  Управляя маленьким напряжением кнопочки мы управляем большим напряжением… разве это не чудо? Да еще и в тиристоре нет никаких клацающих контактов, как в реле. Значит, там нечему выгорать и при нормальном режиме работы такой тиристор прослужит вам, можно сказать, бесконечно.

  • Тиристоры выглядят  как-то вот так:
  • Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?
  • А вот и  схемотехническое обозначение тиристора
  • Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?
  • В настоящее время мощные тиристоры используются для переключения (коммутации) больших напряжений в электроприводах, в установках плавки металла с помощью электрической дуги ( короче говоря с помощью короткого замыкания, в результате чего происходит такой мощный нагрев, что даже начинает плавиться металл)
  • Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?
  • Тиристоры, которые слева, устанавливают на алюминиевые радиаторы, а тиристоры-таблетки даже на радиаторы с водяным охлаждением, потому что через них проходит бешеная сила тока и коммутируют они очень большую мощность.
  • Маломощные тиристоры используются в радиопромышленности и, конечно же, в радиолюбительстве.
  • Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?

Параметры тиристоров

Давайте разберемся с некоторыми важными параметрами  тиристоров. Не зная эти параметры, мы не догоним принцип проверки тиристора. Итак:

1) Uy – отпирающее постоянное напряжение управления– наименьшее постоянное напряжение на управляющем электроде, вызывающее переключение тиристора из закрытого состояния в открытое.

Короче говоря простым языком, минимальное напряжение на управляющем электроде, которое открывает тиристора и электрический ток начинает спокойно себе течь через два оставшихся вывода – анод и катод тиристора.

Это и есть минимальное напряжение открытия тиристора.

2) Uобр max –  обратное напряжение, которое может выдержать тиристор, когда, грубо говоря, плюс подают на катод, а минус – на анод.

3) Iос ср – среднее значение тока, которое может протекать через тиристор  в прямом направлении без вреда для его здоровья.

Остальные параметры не столь критичны для начинающих радиолюбителей. Познакомиться с ними можете в любом справочнике.

Как проверить тиристор КУ202Н

Ну и наконец-то переходим к самому важному – проверке тиристора. Будем проверять самый ходовый и знаменитый советский тиристор – КУ202Н.

  1. А вот и его цоколевка

Для проверки тиристора нам понадобится лампочка, три проводка и блок питания с постоянным током. На блоке питания выставляем напряжение загорания лампочки. Привязываем и припаиваем проводки к каждому выводу тиристора.

  • На анод подаем “плюс” от блока питания, на катод через лампочку “минус”.

Теперь же нам надо подать относительно анода напряжение на Управляющий Электрод (УЭ). Для такого вида тиристора Uy – отпирающее постоянное напряжение управления  больше чем 0,2 Вольта.  Берем полуторавольтовую батарейку и подаем напряжение на УЭ. Вуаля! Лампочка зажглась!

  1. также можно использовать щупы мультиметра в режиме прозвонки, на щупах напряжение тоже больше 0,2 Вольта
  2. Убираем батарейку или щупы, лампочка должна продолжать гореть.

Мы открыли тиристор с помощью подачи на УЭ импульса напряжения.  Все элементарно и просто! Чтобы тиристор опять закрылся, нам надо или разорвать цепь, ну то есть отключить лампочку или убрать щупы, или же подать на мгновение обратное напряжение.

Как проверить тиристор мультиметром

  • Можно также проверить тиристор с помощью мультиметра. Для этого собираем его по этой схемке:

Так как на щупах мультиметра в режиме прозвонки имеется напряжение, то подаем его на УЭ. Для этого замыкаем между собой анод и УЭ и сопротивление через Анод-Катод тиристора резко падает.  На мультике мы видим 112 милливольт падение напряжения. Это значит, что он открылся.

  1. После отпускания мультиметр снова показывает бесконечно большое сопротивление.

Почему же тиристор закрылся? Ведь лампочка  в прошлом примере у нас горела? Все дело в том, что тиристор закрывается, когда ток удержания стает очень малым. В мультиметре ток через щупы очень малый, поэтому и тиристор закрылся без напряжения УЭ.

  • Есть также схема отличного прибора для проверки тиристора, ее можно глянуть в этой статье.
  • Также советую глянуть видео от ЧипДипа про проверку тиристора и ток удержания:

Источник: https://www.RusElectronic.com/kak-proverit-tiristor/

Как проверять тиристоры исправность не выпаивая — мультиметром, лампочкой и батарейками

Тиристоры принадлежат к классу диодов. Но помимо анода и катода, у тиристоров есть третий вывод – управляющий электрод.

Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?

Тиристор – это своего рода электронный выключатель, состоящий из четырех слоев, который может быть в двух состояниях:

  1. Высокая проводимость (открытое).
  2. Низкая проводимость (закрытое).

Тиристоры обладают высокой мощностью, благодаря чему они проводят коммутацию цепи при напряжении доходящей до 5 тысяч вольт и с силой тока равняющейся 5 тысячам ампер. Подобные выключатели способны проводить ток лишь в прямом направлении, а в состоянии низкой проводимости они способны выдержать даже обратное напряжение.

Чтобы приключаться между состояниями, используется специальная технология, которая передает сигналы. С помощью сигнала от объекта управления, тиристор станет в положении высокой проводимости (открытое), а для того чтобы его выключить нужно заряженный конденсатор соединить с ключом.

Есть разные тиристоры, которые отличаются друг от друга характеристиками, управлением и т.д.

Самые известные типы данных устройств:

  • Диодный. Переходит в проводящий режим, когда уровень тока повышается.
  • Инверторный. Он переходит в режим низкой проводимости быстрей подобных устройств.
  • Симметричный. Устройство похоже на 2 устройства со встречно-параллельными диодами.
  • Оптотиристор. Работает благодаря потоку света.
  • Запираемые.

Применение тиристоров

Применение тиристоров очень широкое, начиная от устройств зарядки для автомобиля и заканчивая генераторами и трансформаторами.

Общее применение делится на четыре группы:

  • Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?Экспериментальные устройства.
  • Пороговые устройства.
  • Силовые ключи.
  • Подключение постоянного тока.

Цены на устройства бывают разные, всё зависит от марки производителя и технических характеристик. Отечественные производители делают отличные тиристоры, по небольшой стоимости. Одни из самых распространенных отечественных тиристоров, это устройства серии КУ 202е – используются в бытовых приборах.

Вот некоторые характеристики данного тиристора:

  • Обратное напряжение в состоянии высокой проводимости, максимально 100 В.
  • Напряжение в положении низкой проводимости 100 В.
  • Импульс в состоянии высокой проводимости – 30 А.
  • Повторный импульс в этом же положении – 10 А.
  • Постоянное напряжение 7 В.
  • Обратный ток – 4 мА
  • Ток постоянного типа – 200 мА.
  • Среднее напряжение -1,5 В.
  • Время включения – 10мкс.
  • Выключение – 100 мкс.

Иногда возникают ситуации, в которых необходимо проверить тиристор на работоспособность. Есть различные методы проверки, в этой статье будут рассмотрены основные из них.

Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?Тиристоры быстродействующие ТБ333-250

Проверка с помощью метода лампочки и батарейки

Для этого метода достаточно иметь под рукой лишь лампочку, батарейку, 3 проводка и паяльник, чтобы припаять провода к электродам. Такой набор найдется в доме у каждого.

При проверке прибора с помощью метода батарейки и лампочки, нужно оценить нагрузку тока сто mA, которую создает лампочка, на внутренней цепи. Применять нагрузку следует кратковременно.

При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях.

Проверка методом лампочки и батарейки осуществляется по трём схемам:

  • В первой схеме на управляющий электрод положительный потенциал не подается, благодаря чему не пропускается ток и лампочка не загорается. В случае если лампочка горит, тиристор работает неправильно.
  • Во второй схеме тиристор приводится в состояние высокой проводимости. Для этого нужно подать плюсовой потенциал на управляющий электрод (УЭ). В этом случае, если лампочка не горит, значит с тиристором что-то не так.
  • На третьей схеме с УЭ питание отключается, ток в этом случае проходит через анод и катод. Ток проходит благодаря удержанию внутреннего перехода. Но в этом случае, лампочка может не загореться не только из-за неисправности тиристора, но и из-за протекания тока меньшей величины через цепь, чем крайнее значение удержания.

Так исправность тиристора легко проверить в домашних условиях, не имея под рукой специального оборудования. Если разорвать цепь через анод или катод, у тиристора активируется состояние низкой проводимости.

Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях

Проверка мультиметром

Это самый простой вариант для проверки. В этом методе анод и контакты УЭ подключаются к прибору для измерения (мультиметру). Роль постоянного источника тока здесь играют батареи мультиметра. В качестве индикатора – стрелки или цифровые показатели.

Что нужно, чтобы проверить тиристор мультиметром:

  1. Подцепить черный щуп с минусом к катоду.
  2. Подцепить красный щуп с плюсом к аноду.
  3. Один конец выключателя соединить с разъемом красного щупа.
  4. Настроить мультиметр для измерения сопротивления, не превышающего 2 тысячи ОМ.
  5. Быстро включить и отключить выключатель.
  6. Если проход тока удерживается, значит с тиристором всё хорошо. Чтобы его отключить достаточно, отсоединить напряжение от одного из электродов (анод или катод).
  7. В случае если удерживания проводимости нет, нужно поменять щупы местами и проделать всё с самого начала.
  8. Если перекидывание щупов не помогло, то тиристор неисправен.

Чтобы проверить тиристор не выпаивая, нужно отсоединить УЭ от цепной схемы. Далее нужно проделать все пункты, которые описаны выше.

Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?Роль постоянного источника тока здесь играют батареи мультиметра, в качестве индикатора – стрелки или цифровые показатели

Другие варианты проверки

Также тиристор можно проверить с помощью тестера. Для этого понадобится тестер, батарейка шести – десяти вольт и проводки.

Чтобы проверить устройство тестером нужно следовать следующей схеме:

  • Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?Проверка тимистора с помощью омметраВключить тестер между катодом и анодом: должно показать «бесконечность», потому что тиристор в состоянии низкой проводимости.
  • Подключить батарейку между УЭ и катодом. На тестере должно спасть сопротивление, так как появилась проводимость.
  • Если подачи питания совсем нет, то устройство работает неправильно.
  • Если подача питания постоянная, при любом напряжении на электроды, то и в этом случае с тиристором что-то не так.

Еще тиристор можно проверить с помощью омметра. Этот метод похож на проверку мультиметром и тестером. Потребуется:

  • Подключить плюс омметра к аноду, а минус к катоду. На датчике омметра должно быть показано высокое сопротивление.
  • Замкнуть вывод анода и УЭ, сопротивление на датчике омметра должно резко спасть.

Вот в принципе и вся инструкция для проверки. Если после этих действий отсоединить УЭ от анода, но не разрывать связь анода с омметром, датчик устройства должен показывать низкое сопротивление (это возникает, если ток анода, больше тока удержания).

Также существует еще один способ проверки тиристора с помощью омметров, для этого понадобится дополнительный омметр.

Нужно плюсовой вывод одного омметра подключить к аноду, сопротивление в этот момент должно показываться высокое.

Далее следует, также плюсовой вывод, но уже другого омметра, быстро подключить и отключить от управляющего электрода (УЭ), в этот момент сопротивление первого омметра резко уменьшится.

Блиц-советы

Рекомендации:

  1. Перед тем как проверять тиристор, следует внимательно ознакомиться с техническими характеристиками данного устройства. Эти знание помогут быстрей и эффективней проверить тиристор.
  2. Обычные, стандартные устройства для измерения (омметр, тестер, мультиметр) хорошо зарекомендовали себя для проверки тиристора, но современные приборы, дадут информацию намного точней. К тому же их гораздо легче использовать.
  3. Во избежание неприятных ситуаций все схемы должны собираться в точности.
  4. В работе с любыми диодными устройствами, включая тиристоры, нужно соблюдать технику безопасности.

Защита тиристора:

Тиристоры действуют на скорость увеличение прямого тока. В тиристорах обратный ток восстановления. Если этот ток упадет до низшего значения, может возникнуть перенапряжение. Чтобы предотвратить перенапряжения используются схемы ЦФТП. Также для защиты используют варисторы, их подключают к местам, где выводы индуктивной нагрузки.

Источник: https://housetronic.ru/electro/proveryat-tiristory.html

Как проверить тиристор?

Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?
♦     Как мы уже выяснили – тиристор, это полупроводниковый прибор, обладающий свойствами электрического вентиля. Тиристор с двумя выводами (А — анод, К — катод), это динистор. Тиристор с тремя выводами (А – анод, К – катод, Уэ – управляющий электрод), это тринистор, или в обиходе его называют просто тиристор.

♦      С помощью управляющего электрода (при определенных условиях) можно изменять электрическое состояние тиристора, то есть переводить его из состояния «выключено» в состояние «включено».

Тиристор открывается в случае, если приложенное напряжение между анодом и катодом превысит величину U = Uпр, то есть величину напряжения пробоя тиристора;
Тиристор можно открыть и при напряжении меньше, чем Uпр между анодом и катодом (U < Uпр), если подать импульс напряжения положительной полярности между управляющим электродом и катодом.

♦     В открытом состоянии тиристор может находиться сколько угодно долго, пока на него подано питающее напряжение.
Тиристор можно закрыть:

  • — если уменьшить напряжение между анодом и катодом до U = 0;
  • — если снизить анодный ток тиристора до величины, меньше тока удержания Iуд.
  • — подачей запирающего напряжения на управляющий электрод, (только для запираемых тиристоров).

Тиристор может также находиться в закрытом состоянии сколько угодно долго, до прихода запускающего импульса.
Тиристоры и динисторы работают как в цепях постоянного, так и в цепях переменного тока.

Работа динистора и тиристора в цепях постоянного тока.

Рассмотрим несколько практических примеров.
Первый пример применения динистора, это релаксационный генератор звуковых сигналов.

Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?

В качестве динистора используем КН102А-Б.

♦     Работает генератор следующим образом.
При нажатии кнопки Кн, через резисторы R1 и R2 постепенно заряжается конденсатор С (+ батареи – замкнутые контакты кнопки Кн – резисторы – конденсатор С – минус батареи).
Параллельно конденсатору подключена цепочка из телефонного капсюля и динистора.

Через телефонный капсюль и динистор ток не протекает, так как динистор еще «заперт».
♦     При достижении на конденсаторе напряжения, при котором пробивается динистор, через катушку телефонного капсюля проходит импульс тока разряда конденсатора (С – катушка телефона – динистор — С). Слышен щелчок из телефона, конденсатор разрядился.

Далее снова идет заряд конденсатора С и процесс повторяется.

Частота повторения щелчков зависит от емкости конденсатора и величины сопротивления резисторов R1 и R2.

♦     При указанных на схеме номиналах напряжения, резисторов и конденсатора, частоту звукового сигнала с помощью резистора R2 можно менять в пределах 500 – 5000 герц. Телефонный капсюль необходимо использовать с низкоомной катушкой 50 – 100 Ом, не более, например телефонный капсюль ТК-67-Н.
Телефонный капсюль необходимо включать с соблюдением полярности, иначе не будет работать. На капсюле есть обозначение +(плюс) и – (минус).

♦     У этой схемы (рис 1) есть один недостаток. Из-за большого разброса параметров динистора КН102  (разное  напряжение пробоя), в некоторых случаях, нужно будет увеличить напряжение источника питания до 35 – 45 вольт, что не всегда возможно и удобно.

Устройство управления, собранное на тиристоре, для включения – выключения нагрузки с помощью одной кнопки показано на рис 2.

Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?
Устройство работает следующим образом.
♦     В исходном состоянии тиристор закрыт и лампочка не горит.

Нажмем на кнопку Кн в течении 1 – 2 секунды. Контакты кнопки размыкаются, цепь катода тиристора разрывается.

В этот момент конденсатор С заряжается от источника питания через резистор R1. Напряжение на конденсаторе достигает величины U источника питания.
Отпускаем  кнопку Кн.
В этот момент конденсатор разряжается по цепи: резистор R2 – управляющий электрод тиристора – катод — замкнутые контакты кнопки Кн – конденсатор.

В цепи управляющего электрода потечет ток, тиристор «откроется».

Загорается лампочка по цепи: плюс батареи – нагрузка в виде лампочки – тиристор — замкнутые контакты кнопки – минус батареи.
В таком состоянии схема будет находиться сколько угодно долго.
В этом состоянии конденсатор разряжен: резистор R2, переход управляющий электрод – катод тиристора, контакты кнопки Кн.

♦     Для выключения лампочки необходимо кратковременно нажать на кнопку Кн. При этом основная цепь питания лампочки обрывается. Тиристор «закрывается». Когда контакты кнопки замкнутся, тиристор останется в закрытом состоянии, так как на управляющем электроде тиристора Uynp = 0 (конденсатор разряжен).

  • Мною опробованы и надежно работали в этой схеме различные тиристоры: КУ101, Т122, КУ201, КУ202, КУ208.
  • ♦     Как уже упоминалось, динистор и тиристор имеют свой транзисторный аналог.

Схема аналога тиристора состоит из двух транзисторов и изображена на рис 3.
Транзистор Тр 1 имеет p-n-p проводимость, транзистор Тр 2 имеет n-p-n проводимость. Транзисторы могут быть как германиевые, так и кремниевые.

Аналог тиристора имеет два управляющих входа.
Первый вход: А – Уэ1 (эмиттер — база транзистора Тр1).
Второй вход: К – Уэ2 (эмиттер – база транзистора Тр2).

  1. Аналог имеет: А – анод, К — катод, Уэ1 – первый управляющий электрод, Уэ2 – второй управляющий электрод.
  2. Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?
  3. Если управляющие электроды не использовать, то это будет динистор, с электродами А — анод и К — катод.

♦     Пару транзисторов, для аналога тиристора, надо подбирать одинаковой мощности с током и напряжением выше, чем необходимо для работы устройства. Параметры аналога тиристора (напряжение пробоя Unp, ток удержания Iyд), будут зависеть от свойств применяемых транзисторов.

♦     Для более устойчивой работы аналога в схему добавляют резисторы R1 и R2.  А с помощью резистора R3 можно регулировать напряжение пробоя Uпр и ток удержания Iyд аналога динистора – тиристора. Схема такого аналога изображена на рис 4.

Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?

 Если в схеме генератора звуковых частот (рис 1), вместо динистора КН102 включить аналог динистора, получится устройство с другими свойствами (рис 5).

Напряжение питания такой схемы составит от 5 до 15 вольт. Изменяя величины резисторов R3 и R5 можно изменять тональность звука и рабочее напряжение генератора.

  • Переменным резистором R3 подбирается напряжение пробоя аналога под используемое напряжение питания.
  • Потом можно заменить его на постоянный резистор.
  • Транзисторы Тр1 и Тр2: КТ502 и КТ503; КТ814 и КТ815 или любые другие.
  • ♦     Интересна схема стабилизатора напряжения с защитой от короткого замыкания в нагрузке (рис 6).
  • Если ток в нагрузке превысит 1 ампер, сработает защита.
  • Стабилизатор состоит из:
  • — управляющего элемента– стабилитрона КС510, который определяет напряжение выхода;
  • — исполнительного элемента–транзисторов КТ817А, КТ808А, исполняющих роль регулятора напряжения;
  • — в качестве датчика перегрузки используется резистор R4;
  • — исполнительным механизмом защиты используется аналог динистора, на транзисторах КТ502 и КТ503.

Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения?

♦     На входе стабилизатора в качестве фильтра стоит конденсатор С1. Резистором R1 задается ток стабилизации стабилитрона КС510, величиной 5 – 10 мА. Напряжение на стабилитроне должно быть 10 вольт.
Резистор R5 задает начальный режим стабилизации выходного напряжения.

Резистор R4 = 1,0 Ом, включен последовательно в цепь нагрузки.Чем больше ток нагрузки, тем больше на нем выделяется напряжение, пропорциональное току.

В исходном состоянии, когда нагрузка на выходе стабилизатора мала или отключена, аналог тиристора закрыт.  Приложенного к нему напряжения 10 вольт (от стабилитрона) не хватает для пробоя. В этот момент падение напряжения на резисторе R4 почти равно нулю.

Если постепенно увеличивать ток нагрузки, будет увеличиваться падение напряжения на резисторе R4. При определенном напряжении на R4, аналог тиристора пробивается и установится напряжение, между точкой Тчк1 и общим проводом, равное 1,5 — 2,0 вольта.

Это есть напряжение перехода анод — катод открытого аналога тиристора.

Одновременно загорается светодиод Д1, сигнализируя об аварийной ситуации. Напряжение на выходе стабилизатора, в этот момент, будет равно 1,5 — 2,0 вольта.
Чтобы восстановить нормальную работу стабилизатора, необходимо выключить нагрузку и нажать на кнопку Кн, сбросив блокировку защиты.

На выходе стабилизатора вновь будет напряжение 9 вольт, а светодиод погаснет.
Настройкой резистора R3, можно подобрать ток срабатывания защиты от 1 ампера и более. Транзисторы Т1 и Т2 можно ставить на один радиатор без изоляции. Сам же радиатор изолировать от корпуса.

/span

Источник: http://domasniyelektromaster.ru/tag/tiristor/

Большая Энциклопедия Нефти и Газа

Cтраница 3

Пусть РІ момент tz ток ic достигнет значения Is ( ti), тогда ток через тиристор TTi, равный / Hf ij — ic, уменьшится РґРѕ нуля.

Если считать, что РїСЂРё уменьшении тока анода РґРѕ нуля сопротивление тиристора возрастает скачком ( восстобр — — 0), то РїСЂРё отсутствии РІ схеме РґРёРѕРґР° Р” конденсатор РЎ СЃ момента tz начнет перезаряжаться постоянным током нагрузки, протекающим РІ контуре Р• — РўРў2 — — L — РЎ — ZH. РџСЂРё ttz напряжение РёСЃ Рё, следовательно, итт растет, Р° напряжение РЅР° нагрузке соответственно падает СЃ постоянной скоростью, равной Is ( ti) / C.  [31]

РЎ ростом температуры растет ток утечки / СѓС‚, уменьшается сопротивление закрытого тиристора, снижается напряжение 1 / РІРєРї Рё уменьшается значение обратного допустимого напряжения, РїСЂРё котором наступает РїСЂРѕР±РѕР№ тиристора. Наблюдается также некоторое изменение токов / РІРєР» Рё / выкл.  [32]

Это связано с тем, что при прямом закрытом состоянии ( участок / на характеристике рис. 1.13 а) сопротивление тиристора очень велико.

Если теперь РЅР° управляющий электрод подать отпирающий импульс положительной полярности, то тиристор включается Рё через нагрузку Ru начинает протекать ток.  [34]

Это связано с тем, что при прямом закрытом состоянии ( участок / на характеристике рис. 1.13, а) сопротивление тиристора очень велико.

Если теперь РЅР° управляющий электрод подать отпирающий импульс положительной полярности, то тиристор включается Рё через нагрузку RB начинает протекать ток.  [36]

При этом сопротивление тиристора велико и определяется, главным образом, величиной обратного сопротивления среднего / п-перехода / / ( рис. 6.

5), который оказывается включенным РІ непроводящем ( направлении. Два РґСЂСѓРіРёС… СЂ-СЏ-перехюда — / Рё / / / ( СЂРёСЃ. 6.

5) — включены РІ РїСЂСЏРјРѕРј направлении Рё существенного влияния РЅР° величину сопротивления тиристора РЅРµ оказывают.  [37]

Р’ закрытом состоянии сопротивление тиристора составляет десятки миллионов РѕРј Рё РѕРЅ практически РЅРµ пропускает ток РїСЂРё напряжениях РґРѕ тысячи вольт; РІ открытом — сопротивление тиристора незначительно.

Падение напряжения на нем около 1 В при токах в десятки и сотни ампер. Переход тиристора из одного состояния в другое происходит за очень короткое время, практически скачком.

Среди тиристоров выделяют динисторы Рё тринисторы.  [38]

При работе в схеме тиристор может находиться в двух состояниях.

Р’ РѕРґРЅРѕРј состоянии-закрытом, или выключенном, тиристор имеет высокое сопротивление Рё пропускает малый ток, Р° РІ РґСЂСѓРіРѕРј — открытом, или включенном, сопротивление тиристора мало Рё через него протекает большой ток.  [39]

Управляющий электрод Р—Рў РїСЂРё подаче РЅР° него отрицательного импульса выключится, Рё входная обмотка РўСЂ2 окажется разомкнутой или, точнее, между обмотками будет включено сопротивление, равное сопротивлению выключенного тиристора. Затухание, РІРЅРѕСЃРёРјРѕРµ выключенной ключевой схемой, находится РїРѕ формуле ( 28), РіРґРµ Р· — Rnp — сопротивление цепи СЃРІСЏР·Рё ключа, равное сопротивлению выключенного тиристора.  [40]

Зависит ли сопротивление между УЭ и Катодом тиристора от полярности напряжения? Управляемый выпрямитель.  [41]

Но и в положительную полуволну тиристор открывает цепь тока не сразу, а только после того, как на управляющий электрод будет подан импульс напряжения.

В этот момент тиристор открывается и в цепи появляется ток. Сопротивление тиристора резко уменьшается, и все напряжение питания оказывается приложенным к нагрузке.

Естественно, что после этого тиристор теряет управление и закрывается только после того, как анодное напряжение снизится до нуля.

Р’ отрицательную полуволну тиристор РЅРµ работает.  [42]

Тиристоры обычно проверяют на отсутствие пробоев или обрывов из-за выгорания р-п переходов измерением сопротивлений в прямом и обратном направлениях.

Необходимо подчеркнуть, что результаты таких измерений отличаются большими разбросами, которые определяются не только значением приложенных напряжений, но и принадлежностью тиристора к различным партиям.

Наиболее часто сопротивление тиристора РІ РїСЂСЏРјРѕРј направлении колеблется РѕС‚ 8 РґРѕ 11 РњРћРј, Р° РІ обратном — РѕС‚ 40 РґСЃ 80 РњРћРј.

Сопротивление между катодом Рё управляющим электродом тиристора составляет РІ РѕРґРЅРѕРј направлении 20 — 50 РћРј, РІ РґСЂСѓРіРѕРј — 200 — 400 РћРј.

Тиристоры, установленные РІ ключах РїСЂСЏРјРѕРіРѕ Рё обратного С…РѕРґР°, проверяются РЅР° отсутствие РїСЂРѕР±РѕСЏ измерением сопротивления между РёС… анодом Рё РєРѕСЂРїСѓСЃРѕРј без выпаивания РёР· устройства. Если тиристор РЅРµ РїСЂРѕР±РёС‚, омметр покажет сопротивление параллельно подсоединенного РґРёРѕРґР°.  [43]

В исходном состоянии оба тиристора находятся в выключенном состоянии.

Возбуждающее напряжение распределяется между емкостным сопротивлением сегмента и внутренним сопротивлением выключенного тиристора.

Так как сопротивление выключенного тиристора РІРѕ РјРЅРѕРіРѕ раз больше емкостного сопротивления сегмента ЭЛЗР�, то РІСЃРµ возбуждающее напряжение падает РЅР° нем Рё сегмент ЭЛЗР� РЅРµ светится.  [44]

РџСЂРё дальнейшем возрастании тока значительная часть неосновных носителей накапливается Сѓ среднего p — n — перехода / 72, РёС… концентрация Сѓ этого перехода оказывается большой Рё РѕРЅ смещается РІ РїСЂСЏРјРѕРј направлении. Сопротивление перехода / 72 становится очень маленьким ( падение напряжения РЅР° p — n — переходе / 72 РЅРµ превышает десятых долей вольта) Рё РІ тиристоре наступает устойчивый режим насыщения ( участок 5 РЅР° СЂРёСЃ. 2.36, Р±), РїСЂРё котором тиристор оказывается открытым. Р’ этом режиме сопротивление тиристора чрезвычайно мало, так как РѕРЅРѕ складывается РёР· сопротивлений четырех полупроводниковых областей, трех РїСЂСЏРјРѕ смещенных электронно-дырочных переходов Рё сопротивления контактов выводов.  [45]

Страницы:      1    2    3    4

Источник: https://www.ngpedia.ru/id457426p3.html

Тиристоры. Виды и устройство. Работа и применение. Особенности

Тиристоры — это разновидность полупроводниковых приборов. Они предназначены для регулирования и коммутации больших токов. Тиристор позволяет коммутировать электрическую цепь при подаче на него управляющего сигнала. Это делает его похожим на транзистор.

Как правило, тиристор имеет три вывода, один из которых управляющий, а два других образуют путь для протекания тока. Как мы знаем, транзистор открывается пропорционально величине управляющего тока.

Чем он больше, тем больше открывается транзистор, и наоборот. А у тиристора все устроено иначе. Он открывается полностью, скачкообразно.

И что самое интересное, не закрывается даже при отсутствии управляющего сигнала.

Принцип действия

Рассмотрим работу тиристора по следующей простой схеме.

К аноду тиристора подключается лампочка или светодиод, а к ней подсоединяется плюсовой вывод источника питания через выключатель К2. Катод тиристора подключен к минусу питания. После включения цепи на тиристор подается напряжение, однако светодиод не горит.

Если нажать на кнопку К1, ток через резистор поступит на управляющий электрод, и светодиод начал светиться. Часто на схемах его обозначают буквой «G», что обозначает gate, или по-русски затвор (управляющий вывод).

Резистор ограничивает ток управляющего вывода. Минимальный ток срабатывания данного рассматриваемого тиристора составляет 1 мА, а максимально допустимый ток 15 мА. С учетом этого в нашей схеме подобран резистор сопротивлением 1 кОм.

Если снова нажать на кнопку К1, то это не повлияет на тиристор, и ничего не произойдет. Чтобы перевести тиристор в закрытое состояние, нужно отключить питание выключателем К2. Если же снова подать питание, то тиристор вернется в исходное состояние.

Этот полупроводниковый прибор, по сути, представляет собой электронный ключ с фиксацией. Переход в закрытое состояние происходит и тогда, когда напряжение питания на аноде уменьшается до определенного минимума, примерно 0,7 вольта.

Особенности устройства

Фиксация включенного состояния происходит благодаря особенности внутреннего устройства тиристора. Примерная схема выглядит таким образом:

Обычно он представляется в виде двух транзисторов разной структуры, связанных между собой. Опытным путем можно проверить, как работают транзисторы, подключенные по такой схеме. Однако, имеются отличия в вольтамперной характеристике.

И еще нужно учитывать, что приборы изначально спроектированы так, чтобы выдерживать большие токи и напряжения.

На корпусе большинства таких приборов имеется металлический отвод, на который можно закрепить радиатор для рассеивания тепловой энергии.

Тиристоры выполняются в различных корпусах. Маломощные приборы не имеют теплового отвода. Распространенные отечественные тиристоры выглядят следующим образом. Они имеют массивный металлический корпус и выдерживают большие токи.

Основные параметры тиристоров

  • Максимально допустимый прямой ток. Это максимальное значение тока открытого тиристора. У мощных приборов оно достигает сотен ампер.
  • Максимально допустимый обратный ток.
  • Прямое напряжение. Это падение напряжения при максимальном токе.
  • Обратное напряжение. Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности.
  • Напряжение включения. Это минимальное напряжение, приложенное к аноду. Здесь имеется ввиду минимальное напряжение, при котором вообще возможна работа тиристора.
  • Минимальный ток управляющего электрода. Он необходим для включения тиристора.
  • Максимально допустимый ток управления.
  • Максимально допустимая рассеиваемая мощность.

Динамический параметр

Время перехода тиристора из закрытого состояния в открытое при поступлении сигнала.

Виды тиристоров

По способу управления разделяют на:

  • Диодные тиристоры, или по-другому динисторы. Они открываются импульсом высокого напряжения, которое подается на катод и анод.
  • Триодные тиристоры, или тринисторы. Они открываются током управления электродом.

Триодные тиристоры в свою очередь разделяются:

  • Управление катодом – напряжение, образующее ток управления, поступает на электрод управления и катод.
  • Управление анодом – управляющее напряжение подходит на электрод и анод.

Запирание тиристора производится:

  • Уменьшением анодного тока – катод меньше тока удержания.
  • Подачей напряжения запирания на электрод управления.

По обратной проводимости тиристоры делятся:

  • Обратно-проводящие – имеют малое обратное напряжение.
  • Обратно-непроводящие – обратное напряжение равно наибольшему прямому напряжению в закрытом виде.
  • С ненормируемым обратным значением напряжения – изготовители не определяют значение этой величины. Такие приборы применяются в местах, где обратное напряжение исключено.
  • Симистор – пропускает токи в двух направлениях.

Используя симисторы, нужно знать, что они действуют условно симметрично. Основная часть симисторов открывается, когда на электрод управления поступает положительное напряжение по сравнению с катодом, а на аноде может быть любая полярность.

Но если на анод приходит отрицательное напряжение, а на электрод управления положительное, то симисторы не открываются, и могут выйти из строя.

По быстродействию разделяют по времени отпирания (включения) и времени запирания (отключения).

Разделение тиристоров по мощности

При действии тиристора в режиме ключа наибольшая мощность коммутируемой нагрузки определяется напряжением на тиристоре в открытом виде при наибольшем токе и наибольшей рассеиваемой мощности.

Действующая величина тока на нагрузку не должна быть выше наибольшей рассеиваемой мощности, разделенной на напряжение в открытом виде.

Простая сигнализация на основе тиристора

На основе тиристора можно сделать простую сигнализацию, которая будет реагировать на свет, издавая звук с помощью пьезоизлучателя.

На управляющий вывод тиристора подается ток через фоторезистор и подстроечный резистор. Свет, попадая на фоторезистор, уменьшает его сопротивление.

И на управляющий вывод тиристора начинает поступать отпирающий ток, достаточный для его открывания. После этого включается пищалка.

Подстроечный резистор предназначен для того, чтобы настроить чувствительность устройства, то есть, порог срабатывания при облучении светом. Самое интересное, что даже при отсутствии света тиристор продолжает оставаться в открытом состоянии, и сигнализирование не прекращается.

Если напротив светочувствительного элемента установить световой луч так, чтобы он светил немного ниже окошечка, то получится простейший датчик дыма.

Дым, попадая между источником и приемником света, будет рассеивать свет, что вызовет запуск сигнализации.

Для этого устройства обязательно нужен корпус, для того, чтобы на приемник света не поступал свет от солнца или искусственных источников света.

Открыть тиристор можно и другим способом. Для этого достаточно кратковременно подать небольшое напряжение между управляющим выводом и катодом.

Регулятор мощности на тиристоре

Теперь рассмотрим использование тиристора по прямому назначению. Рассмотрим схему простого тиристорного регулятора мощности, который будет работать от сети переменного тока напряжением 220 вольт. Схема простая и содержит всего пять деталей.

  • Полупроводниковый диод VD.
  • Переменный резистор R1.
  • Постоянный резистор R2.
  • Конденсатор С.
  • Тиристор VS.

Их рекомендованные номинальные значения показаны на схеме. В качестве диода можно использовать КД209, тиристор КУ103В или мощнее. Резисторы желательно использовать мощностью не менее 2 ватт, конденсатор электролитический на напряжение не менее 50 вольт.

Эта схема регулирует лишь один полупериод сетевого напряжения. Если представить, что мы из схемы убрали все элементы, кроме диода, то он будет пропускать только полуволну переменного тока, и на нагрузку, к примеру, на паяльник или лампу накаливания поступит лишь половина мощности.

Тиристор позволяет пропускать дополнительные, условно говоря, кусочки полупериода, срезанного диодом. При изменении положения переменного резистора R1 напряжение на выходе будет меняться.

К положительному выводу конденсатора включен управляющий вывод тиристора.

Когда напряжение на конденсаторе возрастает до напряжения включения тиристора, он открывается и пропускает определенную часть положительного полупериода.

Переменный резистор будет определять скорость зарядки конденсатора. А чем быстрее он зарядится, тем раньше откроется тиристор, и успеет до смены полярности пропустить часть положительного полупериода.

На конденсатор отрицательная полуволна не поступает, и напряжение на нем одной полярности, поэтому не страшно, что он имеет полярность. Схема позволяет изменять мощность от 50 до 100%. Для паяльника это в самый раз подходит.

Тиристор пропускает ток в одном направлении от анода к катоду. Но существуют разновидности, которые пропускают ток в обоих направлениях. Они называются симметричные тиристоры или симисторы. Они используются для управления нагрузкой в цепях переменного тока. Существует большое количество схем регуляторов мощности на их основе.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/tiristory/

Управление тиристором, принцип действия

Тиристор — устройство, обладающее свойствами полупроводника, в основе конструкции которого лежит монокристаллический полупроводник, имеющий три или больше p-n-переходов.

Его работа подразумевает наличие двух стабильных фаз:

  • «закрытая» (уровень проводимости низкий);
  • «открытая» (уровень проводимости высоки).

Тиристоры — устройства, выполняющие функции силовых электронных ключей. Другое их наименование — однооперационные тиристоры. Данный прибор позволяет осуществлять регуляцию воздействия мощных нагрузок посредством незначительных импульсов.

Согласно вольт-амперной характеристике тиристора, увеличение силы тока в нём будет провоцировать снижение напряжения, то есть появится отрицательное дифференциальное сопротивление.

Кроме того, эти полупроводниковые устройства могут объединять цепи с напряжением до 5000 Вольт и силой тока до 5000 Ампер (при частоте не более 1000 Гц).

Тиристоры с двумя и тремя выводами пригодны для работы как с постоянным, так и с переменным током. Наиболее часто принцип их действия сравнивается с работой ректификационного диода и считается, что они являются полноценным аналогом выпрямителя, в некотором смысле даже более эффективным.

Разновидности тиристоров отличаются между собой:

  • Способом управления.
  • Проводимостью (односторонняя или двусторонняя).

Общие принципы управление

В структуре тиристора имеется 4 полупроводниковых слоя в последовательном соединении (p-n-p-n). Контакт, подведённый к наружному p-слою — анод, к наружному n-слою — катод.

Как результат, при стандартной сборке в тиристоре максимально может быть два управляющих электрода, которые крепятся к внутренним слоям.

Соответственно подключённому слою проводники, по типу управления устройства делятся на катодные и анодные. Чаще используется первая разновидность.

Ток в тиристорах течёт в сторону катода (от анода), поэтому соединение с источником тока осуществляет между анодом и плюсовым зажимом, а также между катодом и минусовым зажимом.

Тиристоры с управляющим электродом могут быть:

  • Запираемыми;
  • Незапираемыми.

Показательным свойством незапираемых приборов является отсутствие у них реакции на сигнал с управляющего электрода. Единственный способ закрыть их — снизить уровень протекающего сквозь них тока так, чтобы он уступал силе тока удержания.

Управляя тиристором следует учитывать некоторые моменты. Устройство данного типа сменяет фазы работы с «выключен» на «включён» и обратно скачкообразно и только при условии внешнего воздействия: при помощи тока (манипуляции с напряжением) или фотонов (в случаях с фототиристором).

Чтобы разобраться в данном моменте необходимо помнить, что у тиристора преимущественно имеется 3 вывода (тринистор): анод, катод и управляющий электрод.

Уэ (управляющий электрод) как раз таки и отвечает за то, чтобы включать и выключать тиристор. Открытие тиристора происходит при условии, что приложенное напряжение между А (анодом) и К (катодом) становится равным или превосходит объём напряжения работы тринистора. Правда, во втором случае потребуется воздействие импульса положительной полярности между Уэ и К.

При постоянной подаче питающего напряжения тиристор может быть открыт бесконечно долго.

Чтобы перевести его в закрытое состояние, можно:

  • Снизить уровень напряжения между А и К до нуля;
  • Понизить значение А-тока таким образом, чтобы показатели силы тока удержания оказались больше;
  • Если работа цепи построена на действии переменного тока, выключение прибора произойдёт без постороннего вмешательства, когда уровень тока сам снизится до нулевого показания;
  • Подать запирающее напряжение на Уэ (актуально только в отношении запираемых разновидностей полупроводниковых устройств).

Состояние закрытости тоже длится бесконечно долго, пока не возникнет запускающий импульс.

Конкретные способы управления

Представляет собой подачу положительного напряжения изменяющейся величины на Уэ. Открытие тиристора происходит, когда величины напряжения довольно, чтобы пробиться через управляющий переход тока спрямления (Iспр.). При помощи изменения величины напряжения на Уэ, появляется возможность изменения времени открытия тиристора.

Главный недочёт этого метода — сильное влияние температурного фактора. Кроме того, для каждой разновидности тиристора потребуется резистор другого вида. Этот момент не добавляет удобства в эксплуатации. Помимо этого время открытия тиристора возможно корректировать лишь пока длится первая 1/2 положительного полупериода сети.

Заключается в смене фазы Uупр (в соотношении с напряжением на аноде). При этом применяется фазовращательный мост. Главный минус — малая крутизна Uупр, поэтому стабилизировать момент открытия тиристора можно лишь ненадолго.

Рассчитан на преодоление недостатков фазового метода. С этой целью на Уэ подаётся импульс напряжения с крутым фронтом. Данный подход в настоящее время наиболее распространён.

Тиристоры и безопасность

Из-за импульсности своего действия и наличия обратного восстановительного тока тиристоры очень сильно повышает риск перенапряжения в работе прибора. Помимо этого опасность перенапряжения в зоне полупроводника высока, если в других частях цепи напряжения нет вовсе.

Поэтому во избежание негативных последствий принято использовать схемы ЦФТП. Они препятствуют появлению и удержанию критический значений напряжения.

Двухтранзисторная модель тиристора

Из двух транзисторов вполне можно собрать динистор (тиристор с двумя выводами) или тринистор (тиристор с тремя выводами). Для этого один из них должен иметь p-n-p-проводимость, другой — n-p-n-проводимость. Выполнены транзисторы могут быть как из кремния, так и из германия.

Соединение между ними осуществляется по двум каналам:

  • Анод от 2-го транзистора + Управляющий электрод от 1-го транзистора;
  • Катод от 1-го транзистора + Управляющий электрод от 2-го транзистора.

Если обойтись без использования управляющих электродов, то на выходе получится динистор.

Совместимость выбранных транзисторов определяется по одинаковому объёму мощности. При этом показания тока и напряжения должны быть обязательно больше требуемых для нормального функционирования прибора. Данные по напряжению пробоя и току удержания зависят от конкретных качеств использованных транзисторов.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта Электронщик, буду рад если вы найдете на моем сайте еще что-нибудь полезное. Делитесь информацией в соцсетях, ставьте лайки, если вам понравилось — это поможет развитию канала

Источник: https://zen.yandex.ru/media/id/5c615e3c9e391400ae5f8253/5d0d12866a6e5d00afda3889

Ссылка на основную публикацию