Основное предназначение выпрямительных диодов — преобразование напряжения. Но это не единственная сфера применения данных полупроводниковых элементов.
Их устанавливают в цепи коммутации и управления, используют в каскадных генераторах и т.д.
Начинающим радиолюбителям будет интересно узнать, как устроены эти полупроводниковые элементы, а также их принцип действия. Начнем с общих характеристик.
Устройство и конструктивные особенности
Основной элемент конструкции – полупроводник. Это пластина кристалла кремния или германия, у которого имеются две области р и n проводимости. Из-за этой особенности конструкции она получила название плоскостной.
При изготовлении полупроводника обработка кристалла производится следующим образом: для получения поверхности р-типа ее обрабатывают расплавленным фосфором, а р-типа – бором, индием или алюминием. В процессе термообработки происходит диффузия этих материалов и кристалла.
В результате образуется область с р-n переходом между двумя поверхностями с различной электропроводимостью. Полученный таким образом полупроводник устанавливается в корпус. Это обеспечивает защиту кристалла от посторонних факторов воздействия и способствует теплоотводу.
Конструкция (1), внешний вид (2) и графическое отображение выпрямительного диода(3)
Обозначения:
- А – вывод катода.
- В – кристалладержатель (приварен к корпусу).
- С – кристалл n-типа.
- D – кристалл р-типа.
- E – провод ведущий к выводу анода.
- F – изолятор.
- G – корпус.
- H – вывод анода.
Как уже упоминалось, в качестве основы р-n перехода используются кристаллы кремния или германия.
Первые применяются значительно чаще, это связано с тем, что у германиевых элементов величина обратных токов значительно выше, что существенно ограничивает допустимое обратное напряжение (оно не превышает 400 В). В то время как у кремниевых полупроводников эта характеристика может доходить до 1500 В.
Помимо этого у германиевых элементов значительно уже диапазон рабочей температуры, он варьируется в пределах от -60°С до 85°С. При превышении верхнего температурного порога резко увеличивается обратный ток, что отрицательно отражается на эффективности устройства. У кремниевых полупроводников верхний порог порядка 125°С-150°С.
Классификация по мощности
Мощность элементов определяется максимально допустимым прямым током. В соответствии этой характеристики принята следующая классификация:
- Слаботочные выпрямительные диоды, они используются в цепях с током не более 0,3 А. Корпус таких устройств, как правило, выполнен из пластмассы. Их отличительные особенности – малый вес и небольшие габариты.
Выпрямительные диоды малой мощности - Устройства, рассчитанные на среднюю мощность, могут работать с током в диапазоне 0,3-10 А. Такие элементы, в большинстве своем, изготавливаются корпусе из металла и снабжены жесткими выводами. На одном один из них, а именно на катоде, имеется резьба, позволяющая надежно зафиксировать диод на радиаторе, используемого для отвода тепла.
Выпрямительный диод средней мощности - Силовые полупроводниковые элементы, они рассчитаны на прямой ток свыше 10 А. Производятся такие устройства в металлокерамических или металлостеклянных корпусах штыревого (А на рис. 4) или таблеточного типа (В).
Рис. 4. Выпрямительные диоды высокой мощности
Перечень основных характеристик
Ниже приведена таблица, с описанием основных параметров выпрямительных диодов. Эти характеристики можно получить из даташита (технического описания элемента). Как правило, большинство радиолюбителей к этой информации обращаются в тех случаях, когда указанный в схеме элемент недоступен, что требует найти ему подходящий аналог.
Таблица основных характеристик выпрямительных диодов
Заметим, что в большинстве случаев, если требуется найти аналог тому или иному диоду, первых пяти параметров из таблицы будет вполне достаточно. При этом желательно учесть диапазон рабочей температуры элемента и частоту.
Принцип работы
Проще всего объяснить принцип действия выпрямительных диодов на примере. Для этого смоделируем схему простого однополупериодного выпрямителя (см. 1 на рис. 6), в котором питание поступает от источника переменного тока с напряжением UIN (график 2) и идет через VD на нагрузку R.
Рис. 6. Принцип работы однодиодного выпрямителя
Во время положительного полупериода, диод находится в открытом положении и пропускает через себя ток на нагрузку.
Когда приходит очередь отрицательного полупериода, устройство запирается, и питание на нагрузку не поступает.
То есть происходит как бы отсечение отрицательной полуволны (на самом деле это не совсем верно, поскольку при данном процессе всегда имеется обратный ток, его величина определяется характеристикой Iобр).
В результате, как видно из графика (3), на выходе мы получаем импульсы, состоящие из положительных полупериодов, то есть, постоянный ток. В этом и заключается принцип работы выпрямительных полупроводниковых элементов.
Заметим, что импульсное напряжение, на выходе такого выпрямителя подходить только для питания малошумных нагрузок, примером может служить зарядное устройство для кислотного аккумулятора фонарика. На практике такую схему используют разве что китайские производители, с целью максимального удешевления своей продукции. Собственно, простота конструкции является единственным ее полюсом.
К числу недостатков однодиодного выпрямителя можно отнести:
- Низкий уровень КПД, поскольку отсекаются отрицательные полупериоды, эффективность устройства не превышает 50%.
- Напряжение на выходе примерно вдвое меньше, чем на входе.
- Высокий уровень шума, что проявляется в виде характерного гула с частотой питающей сети. Его причина – несимметричное размагничивание понижающего трансформатора (собственно именно поэтому для таких схем лучше использовать гасящий конденсатор, что также имеет свои отрицательные стороны).
Заметим, что эти недостатки можно несколько уменьшить, для этого достаточно сделать простой фильтр на базе высокоемкостного электролита (1 на рис. 7).
Рис. 7. Даже простой фильтр позволяет существенно снизить пульсации
Принцип работы такого фильтра довольно простой. Электролит заряжается во время положительного полупериода и разряжается, когда наступает черед отрицательного. Емкость при этом должна быть достаточной для поддержания напряжения на нагрузке. В этом случае импульсы несколько сгладятся, примерно так, как продемонстрировано на графике (2).
Приведенное решение несколько улучшит ситуацию, но ненамного, если запитать от такого однополупериодного выпрямителя, например, активные колонки компьютера, в них будет слышаться характерный фон. Для устранения проблемы потребуются более радикальное решение, а именно диодный мост. Рассмотрим принцип работы этой схемы.
Устройство и принцип работы диодного моста
Существенно отличие такой схемы (от однополупериодной) заключается в том, что напряжение на нагрузку подается в каждый полупериод. Схема включения полупроводниковых выпрямительных элементов продемонстрирована ниже.
Принцип работы диодного моста
Как видно из приведенного рисунка в схеме задействовано четыре полупроводниковых выпрямительных элемента, которые соединены таким образом, что при каждом полупериоде работают только двое из них. Распишем подробно, как происходит процесс:
- На схему приходит переменное напряжение Uin (2 на рис. 8). Во время положительного полупериода образуется следующая цепь: VD4 – R – VD2. Соответственно, VD1 и VD3 находятся в запертом положении.
- Когда наступает очередность отрицательного полупериода, за счет того, что меняется полярность, образуется цепь: VD1 – R – VD3. В это время VD4 и VD2 заперты.
- На следующий период цикл повторяется.
Как видно по результату (график 3), в процессе задействовано оба полупериода и как бы не менялось напряжение на входе, через нагрузку оно идет в одном направлении. Такой принцип работы выпрямителя называется двухполупериодным. Его преимущества очевидны, перечислим их:
- Поскольку задействованы в работе оба полупериода, существенно увеличивается КПД (практически вдвое).
- Пульсация на выходе мостовой схемы увеличивает частоту также вдвое (по сравнению с однополупериодным решением).
- Как видно из графика (3), между импульсами уменьшается уровень провалов, соответственно сгладить их фильтру будет значительно проще.
- Величина напряжения на выходе выпрямителя приблизительно такая же, как и на входе.
Помехи от мостовой схемы незначительны, и становятся еще меньше при использовании фильтрующей электролитической емкости. Благодаря этому такое решение можно использовать в блоках питания, практически, для любых радиолюбительских конструкций, в том числе и тех, где используется чувствительная электроника.
Заметим, совсем не обязательно использовать четыре выпрямительных полупроводниковых элемента, достаточно взять готовую сборку в пластиковом корпусе.
Диодный мост в виде сборки
Такой корпус имеет четыре вывода, два на вход и столько же на выход. Ножки, к которым подключается переменное напряжение, помечаются знаком «~» или буквами «AC». На выходе положительная ножка помечается символом «+», соответственно, отрицательная как «-».
На принципиальной схеме такую сборку принято обозначать в виде ромба, с расположенным внутри графическим отображением диода.
На вопрос что лучше использовать сборку или отдельные диоды нельзя ответить однозначно. По функциональности между ними нет никакой разницы. Но сборка более компактна. С другой стороны, при ее выходе из строя поможет только полная замена. Если же в этаком случае используются отдельные элементы, достаточно заменить вышедший из строя выпрямительный диод.
Источник: https://www.asutpp.ru/vypryamitelnye-diody.html
Выпрямительный диод — виды, принцип работы и применение
Существует немало устройств, созданных с целью преобразования электрического тока, и выпрямительные диоды – одни из них.
Выпрямительный диод – преобразователь тока переменного в постоянный. Является одним из видов полупроводников. Широкое применение получил благодаря основной характеристике – переводу электрического тока строго в одном направлении.
Принцип действия
Необходимый эффект при работе устройства создают особенности p-n перехода. Заключаются в том, что рядом с переходом двух полупроводников встраивается слой, который характеризуется двумя моментами: большим сопротивлением и отсутствием носителей заряда.
Далее при воздействии на данный запирающий слой переменного напряжения извне толщина его уменьшается и впоследствии исчезает. Возрастающий во время этого ток и является прямым током, который проходит от анода к катоду.
В случае перемены полярности внешнего переменного напряжения запирающий слой будет больше, и сопротивление неминуемо возрастет.
ВАХ выпрямительного диода (вольт-амперная характеристика) также дает представление о специфике работы выпрямителя и является нелинейной. Выглядит следующим образом: существует две ветви – прямая и обратная. Первая отражает наибольшую проводимость полупроводника при возникновении прямой разницы потенциалов. Вторая указывает на значение низкой проводимости при обратной разнице потенциалов.
Вольт-амперные характеристики выпрямителя прямо пропорциональны температуре, с повышением которой разность потенциалов сокращается. Электрический ток не пройдет через устройство в случае низкой проводимости, но лавинный пробой происходит в случае возросшего до определенного уровня обратного напряжения.
Использование сборки
При эксплуатации выпрямительного полупроводникового диода польза извлекается только из половины волн переменного тока, соответственно, безвозвратно теряется более половины входного напряжения.
С целью улучшить качество преобразования переменного тока в постоянный используется сборка из четырех устройств – диодный мост. Выгодно отличается тем, что пропускает ток на протяжении каждого полупериода. Диодные мосты производят в виде комплекта, заключенного в пластиковый корпус.
Принципиальная схема диодного моста
Физико-технические параметры
Основные параметры выпрямительных диодов базируются на таких значениях:
- максимально допустимом значении разницы потенциалов при выпрямлении тока, при котором устройство не выйдет из строя;
- наибольшем среднем выпрямленном токе;
- наибольшем значении обратного напряжения.
Выпрямители промышленность выпускает с разными физическими характеристиками. Соответственно, устройства имеют разную форму и способ монтажа. Разделяются при этом на три группы:
- Выпрямительные диоды большой мощности. Характеризуются пропускной способностью тока до 400 А и являются высоковольтными. Высоковольтные выпрямительные диоды производятся в корпусах двух видов –штыревом, где корпус герметичный и стеклянный, и таблеточном, где корпус из керамики.
- Выпрямительные диоды средней мощности. Обладают пропускной способность от 300 мА до 10А.
- Выпрямительные диоды малой мощности. Максимально допустимое значение тока – до 300 мА.
Выбор выпрямительных диодов
При приобретении устройства необходимо руководствоваться такими параметрами:
- значениями вольт-амперной характеристики максимально обратного и пикового тока;
- максимально допустимым обратным и прямым напряжением;
- средней силой выпрямленного тока;
- материалом прибора и типом монтажа.
В зависимости от физических характеристик на корпус устройства наносится соответствующее обозначение. Каталог с маркировкой выпрямительных диодов представлен в специализированном справочнике. Необходимо знать, что маркировка импортных аналогов отличается от отечественных.
Также стоит обратить внимание на то, что выпрямительные схемы отличаются по количеству фаз:
- Однофазные. Широко применяются для бытовых электроприборов. Существуют диоды автомобильные и для электродуговой сварки.
- Многофазные. Незаменимы для промышленного оборудования, общественного и специального транспорта.
Диод Шоттки
Отдельную позицию занимает диод Шоттки. Изобрели его в связи с растущими потребностями в развивающейся отрасли радиоэлектроники.
Основное отличие его от остальных диодов заключается в том, что в его конструкцию заложен металл-полупроводник как альтернатива p-n переходу.
Соответственно, диод Шоттки обладает своими, уникальными свойствами, которыми не могут похвастаться кремниевые выпрямительные диоды. Некоторые из них:
- оперативная возобновляемость заряда благодаря его низкому значению;
- минимальное падение напряжения на переходе при прямом включении;
- ток утечки обладает большим значением.
При изготовлении диода Шоттки применяют такие материалы, как кремний и арсенид галлия, но иногда применяется и германий. Свойства материалов немного отличаются, но в любом случае, максимально допустимое обратное напряжение для выпрямителя Шоттки составляет не более 1200 V.
В противовес всем достоинствам конструкция данного вида имеет и минусы. Например, в сборке моста устройство категорически не воспринимает превышение обратного тока. Нарушение условия приводит к поломке выпрямителя. Также малое падение напряжения происходит при невысоком напряжении около 60-70 V. Если значение превышает этот показатель, то устройство превращается в обыкновенный выпрямитель.
Стоит отметить, что достоинства диода мощного выпрямительного Шоттки значительно превышают недостатки.
Диод-стабилитрон
Для стабилизации напряжения используют специальное приспособление, способное работать в режиме пробоя, – стабилитрон, зарубежное название которого «диод Зенера».
Выполняет свою функцию устройство, работая в режиме пробоя при напряжении обратного смещения.
Возрастание силы тока происходит в момент пробоя, одновременно опускается до минимума дифференциальное значение, вследствие чего напряжение стабильное и охватывает достаточно серьезный диапазон обратных токов.
Практическое использование выпрямительного диода
В связи с неудержимым развитием научно-технического прогресса применение выпрямителей затронуло все сферы жизнедеятельности человека. Диоды силовые выпрямительные эксплуатируются в таких узлах и механизмах:
- в блоках питания главных двигателей транспортных средств (наземных, воздушных и водных), промышленных станков и техники, буровых установок;
- в комплектации диодного моста для сварочных аппаратов;
- в выпрямительных установках для гальванических ванн, используемых для получения цветных металлов или нанесения защитного покрытия на деталь или изделие;
- в выпрямительных установках для очистки воды и воздуха, фильтрах различного рода;
- для передачи электроэнергии на дальние расстояния посредством высоковольтной линии электропередач.
В повседневной жизни выпрямители используют в различных транзисторных схемах. Применяют в основном маломощные устройства как в виде однополупериодного выпрямителя, так и виде диодного моста. Например, диоды выпрямительного блока генератора хорошо известны автолюбителям.
Выпрямительный диод — виды, принцип работы и применение
Источник: https://220.guru/elektrooborudovanie/komponenty/vypryamitelnyj-diod.html
Выпрямительный диод
Содержание:
Одним из электронных устройств, широко использующихся в различных схемах, является выпрямительный диод, с помощью которого переменный ток преобразуется в постоянный. Его конструкция создана в виде двухэлектродного прибора с односторонней электрической проводимостью.
Выпрямление переменного тока происходит на переходах металл-полупроводник и полупроводник-металл. Точно такой же эффект достигается в электронно-дырочных переходах некоторых кристаллов – германия, кремния, селена.
Эти кристаллы во многих случаях используются в качестве основных элементов приборов.
Выпрямительные диоды применение нашли в различных электронных, радиотехнических и электрических устройствах. С их помощью осуществляется замыкание и размыкание цепей, детектирование и коммутация импульсов и электрических сигналов, а также другие аналогичные преобразования.
Принцип работы выпрямительного диода
Каждый диод оборудуется двумя выводами, то есть электродами – анодом и катодом. Анод соединяется с р-слоем, а катод – с n-слоем. В случае прямого включения диода на анод поступает плюс, а на катод – минус. В результате, через диод начинает проходить электрический ток.
Если же подачу тока выполнить наоборот – к аноду подать минус, а к катоду – плюс получится так называемое обратное включение диода. В этом случае течения тока уже не будет, на что указывает вольтамперная характеристика выпрямительного диода. Поэтому при поступлении на вход переменного напряжения, через диод будет проходить только одна полуволна.
Представленный рисунок наглядно отражает вольтамперную характеристику диода. Ее прямая ветвь расположена в первом квадранте графика. Она описывает диод в состоянии высокой проводимости, когда к нему приложено прямое напряжение.
Данная ветвь выражается в виде кусочно-линейной функции u = U0 + RД x i, в которой u представляет собой напряжением на вентиле во время прохождения тока i.
Соответственно, U0 и RД являются пороговым напряжением и динамическим сопротивлением.
Третий квадрант содержит обратную ветвь вольтамперной характеристики, указывающей на низкую проводимость при обратном напряжении, приложенном к диоду. В этом состоянии течение тока через полупроводниковую структуру практически отсутствует.
Данное положение будет правильным лишь до определенного значения обратного напряжения. В этом случае напряженность электрического поля в области p-n-перехода может достичь уровня 105 В/см. Такое поле сообщает электронам и дыркам – подвижным носителям заряда, кинетическую энергию, способную вызвать ионизацию нейтральных атомов кремния.
Стандартная структура выпрямительного диода предполагает наличие дырок и электронов проводимости, постоянно возникающих под действием термической генерации по всему объему структуры проводника. В дальнейшем происходит их ускорение под действием электрического поля p-n-перехода.
То есть электроны и дырки также участвуют в ионизации нейтральных атомов кремния. В этом случае обратный ток нарастает лавинообразно, возникают так называемые лавинные пробои. Напряжение, при котором резко повышается обратный ток, обозначается на рисунке в виде напряжения пробоя U3.
Основные параметры выпрямительных диодов
Определяя параметры выпрямительных элементов, следует учитывать следующие факторы:
- Разница потенциалов, максимально допустимая при выпрямлении тока, когда устройство еще не может выйти из строя.
- Максимальное значение среднего выпрямленного тока.
- Максимальный показатель обратного напряжения.
- Выпрямительные устройства выпускаются различной формы и могут монтироваться разными способами.
- В соответствии с физическими характеристиками, они разделяются на следующие группы:
- Выпрямительные диоды большой мощности, пропускная способность которых составляет до 400 А. Они относятся к категории высоковольтных и выпускаются в двух видах корпусов. Штыревой корпус изготавливается из стекла, а таблеточный – из керамики.
- Выпрямительные диоды средней мощности с пропускной способностью от 300 мА до 10 А.
- Маломощные выпрямительные диоды с максимально допустимым значением тока до 300 мА.
Выбирая то или иное устройство, необходимо учитывать вольтамперные характеристики обратного и пикового максимальных токов, максимально допустимое прямое и обратное напряжение, среднюю силу выпрямленного тока, а также материал изделия и тип его монтажа. Все основные свойства выпрямительного диода и его параметры наносятся на корпус в виде условных обозначений. Маркировка элементов указывается в специальных справочниках и каталогах, ускоряя и облегчая их выбор.
Схемы с использованием выпрямительных диодов отличаются количеством фаз:
- Однофазные нашли широкое применение в бытовых электроприборах, автомобилях и аппаратуре для электродуговой сварки.
- Многофазные используются в промышленном оборудовании, специальном и общественном транспорте.
В зависимости от используемого материала, выпрямительные диоды и схемы с диодами могут быть германиевыми или кремниевыми.
Чаще всего применяется последний вариант, благодаря физическим свойствам кремния.
Данные диоды обладают значительно меньшей величиной обратных токов при одном и том же напряжении, поэтому допустимое обратное напряжение имеет очень высокую величину, в пределах 1000-1500 вольт.
Для сравнения, у германиевых диодов эта величина составляет 100-400 В.
Кремниевые диоды сохраняют работоспособность в температурном диапазоне от — 60 до + 150 градусов, а германиевые – только в пределах от — 60 до + 850С.
Электронно-дырочные пары при температуре, превышающей это значение, образуются с большой скоростью, что приводит к резкому увеличению обратного тока и снижению эффективности работы выпрямителя.
Схема включения выпрямительного диода
Простейший выпрямитель работает по следующей схеме. На вход подается переменное напряжение сети с положительными и отрицательными полупериодами, окрашенными соответственно в красный и синий цвета. На выходе подключается обычная нагрузка RH, а выпрямляющим элементом будет диод VD.
Когда на анод поступают положительные полупериоды напряжения, происходит открытие диода. В этот период через диод и нагрузку, запитанную от выпрямителя, будет протекать прямой ток диода Iпр. На графике, расположенном справа, эта волна обозначена красным цветом.
При поступлении на анод отрицательных полупериодов напряжения, наступает закрытие диода, и во всей цепи начинается течение незначительного обратного тока.
В данном случае отрицательная полуволна переменного тока отсекается диодом. Эту отсеченную полуволну обозначает синяя прерывистая линия.
На схеме условное обозначение выпрямительного диода такое же, как обычно, только поверх значка проставляются символы VD.
В результате, через нагрузку, подключенную через диод к сети, будет протекать уже не переменный, а пульсирующий ток одного направления. Фактически, это и есть выпрямленный переменный ток.
Однако такое напряжение подходит лишь для нагрузок малой мощности, запитанных от сети переменного тока. Это могут быть лампы накаливания, которым не требуются особые условия питания.
В этом случае напряжение будет проходить через лампу лишь во время импульсов – положительных волн. Наблюдается слабое мерцание лампы с частотой 50 Гц.
При подключении питания с таким же напряжением к приемнику или усилителю мощности, в громкоговорителе или колонках, будет слышен гул с низкой тональностью, частотой 50 Гц, известный как фон переменного тока. В этих случаях аппаратура начинает «фонить». Причиной такого состояния считается пульсирующий ток, проходящий через нагрузку и создающий в ней пульсирующее напряжение. Именно оно и создает фон.
Данный недостаток частично устраняется путем параллельного подключения к нагрузке фильтрующего электролитического конденсатора Сф с большой емкостью.
В течение положительных полупериодов он заряжается импульсными токами, а во время отрицательных – разряжается с помощью нагрузки RH.
Большая емкость конденсатора позволяет поддерживать на нагрузке непрерывный ток в течение всех полупериодов – положительных и отрицательных. На графике такой ток представляет собой сплошную волнистую линию красного цвета.
Тем не менее, данный сглаженный ток все равно не обеспечивает нормальную работу, поскольку половина входного напряжения теряется при выпрямлении, когда задействуется только один полупериод.
Этот недостаток компенсируют мощные выпрямительные диоды, собранные вместе в так называемый диодный мост. Данная схема состоит из четырех элементов, что позволяет пропускать ток в течение всех полупериодов.
За счет этого преобразование переменного тока в постоянный происходит значительно эффективнее.
Источник: https://electric-220.ru/news/vyprjamitelnyj_diod/2017-11-19-1390
Выпрямительные диоды: Конструктивные особенности и особенности вольт-амперных характеристик выпрямительных диодов
Выпрямительные диоды применяются в цепях управления, коммутации, в ограничительных и развязывающих цепях, в источниках питания для преобразования (выпрямления) переменного напряжения в постоянное, в схемах умножения напряжения и преобразователях постоянного напряжения, где не предъявляются высокие требования к частотным и временным параметрам сигналов. В зависимости от значения максимального выпрямляемого тока различают выпрямительные диоды малой мощности ((I_{пр max} le {0,3 А})), средней мощности (({0,3 А} < I_{пр max} le {10 А})) и большой мощности ((I_{пр max} > {10 А})). Диоды малой мощности могут рассеивать выделяемую на них теплоту своим корпусом, диоды средней и большой мощности должны располагаться на специальных теплоотводящих радиаторах, что предусматривается в т.ч. и соответствующей конструкцией их корпусов.
Обычно, допустимая плотность тока, проходящего через (p)-(n)-переход, не превышает 2 А/мм2, поэтому для получения указанных выше значений среднего выпрямленного тока в выпрямительных диодах используют плоскостные (p)-(n)-переходы. Такие переходы имеют существенную емкость, что ограничивает максимальную допустимую рабочую частоту ((f_р)) выпрямительных диодов.
Выпрямительные свойства диодов тем лучше, чем меньше обратный ток при заданном обратном напряжении и чем меньше падение напряжения при заданном прямом токе.
Значения прямого и обратного токов отличаются на несколько порядков, а прямое падение напряжения не превышает единиц вольт по сравнению с обратным напряжением, которое может составлять сотни и более вольт. Поэтому диоды обладают односторонней проводимостью, что позволяет использовать их в качестве выпрямительных элементов.
Вольт-амперные характеристики (ВАХ) германиевых и кремниевых диодов различаются. На рис. 2.3‑1 для сравнения показаны типичные ВАХ для германиевых и кремниевых выпрямительных диодов при различных температурах окружающей среды.
Рис. 2.3-1. Вольт-амперные характеристики выпрямительных диодов при различных температурах окружающей среды
По приведенным ВАХ видно, что обратный ток кремниевых диодов значительно меньше обратного тока германиевых диодов.
Кроме того, обратная ветвь вольт-амперной характеристики кремниевых диодов не имеет явно выраженного участка насыщения, что обусловлено генерацией носителей зарядов в (p)-(n)-переходе и токами утечки по поверхности кристалла.
При подаче обратного напряжения превышающего некий пороговый уровень происходит резкое увеличение обратного тока, что может привести к пробою (p)-(n)-перехода. У германиевых диодов, вследствие большой величины обратного тока, пробой имеет тепловой характер.
У кремниевых диодов вероятность теплового пробоя мала, у них преобладает электрический пробой. Пробой кремниевых диодов имеет лавинный характер, поэтому у них, в отличие от германиевых диодов, пробивное напряжение повышается с увеличением температуры. Допустимое обратное напряжение кремниевых диодов (до 1600 В) значительно превосходит аналогичный параметр германиевых диодов.
Обратные токи в значительной степени зависят от температуры перехода. Из рисунка видно, что с ростом температуры обратный ток возрастает.
Для приближенной оценки можно считать, что с увеличением температуры на 10 °С обратный ток германиевых диодов возрастает в 2, а кремниевых — в 2,5 раза. Верхний предел диапазона рабочих температур германиевых диодов составляет 75…80 °С, а кремниевых — 125 °С.
Существенным недостатком германиевых диодов является их высокая чувствительность к кратковременным импульсным перегрузкам.
Вследствие меньшего обратного тока кремниевого диода его прямой ток, равный току германиевого диода, достигается при большем значении прямого напряжения. Поэтому мощность, рассеиваемая при одинаковых токах, в германиевых диодах меньше, чем в кремниевых.
Прямое напряжение при малых прямых токах, когда преобладает падение напряжения на переходе, с ростом температуры уменьшается.
При больших токах, когда преобладает падение напряжения на сопротивлении нейтральных областей полупроводника, зависимость прямого напряжения от температуры становится положительной. Точка, в которой отсутствует зависимость прямого напряжения от температуры (т.е.
эта зависимость меняет знак), называется точкой инверсии. У большинства диодов малой и средней мощности допустимый прямой ток, как правило, не превышает точки инверсии, а у мощных диодов допустимый ток может быть выше этой точки.
Источник: https://www.club155.ru/diods-rectifier-common
Основные параметры выпрямительных диодов
-
постоянное прямое напряжение на диоде при заданном значении прямого тока через диод
-
постоянный прямой ток
-
величина обратного тока при заданном значении обратного напряжения
-
максимальное обратное напряжение
-
рабочий диапазон температур
-
максимальная частота, на которой еще не происходит ухудшение основных параметров
-
тепловое сопротивление переход-корпус, переход-среда
-
максимальная емкость диода
-
сопротивление постоянного тока
Вопрос 15
- Стабилитрон – это прибор,
предназначенный для стабилизации
напряжения на присоединенной параллельно
ему нагрузке в случае изменения ее
сопротивления или величины напряжения
питания - При работе стабилитрона используется
участок пробоя на обратной ветви ВАХ,
где значительному изменению тока
соответствует очень малое изменение
напряжения. - Напряжение стабилизации зависит от
толщины p-nперехода, а толщина от величины удельного
сопротивления материала
Рис 28 ВАХ стабилитрона
Рис 29 параметрический стабилизатор
напряжения; 1 – нагрузка; 2 – для уменьшения
пульсации вешается конденсатор.
При изменении температуры напряжение
стабилизации изменяется неоднозначно.
В слаболегированных полупроводниках
(используются в высоковольтных
стабилитронах) с ростом температуры
длина свободного пробега носителей
уменьшается.
Для того, чтобы при меньшей
длине свободного пробега носители могли
приобрести энергию, достаточную для
ионизации валентных связей, требуется
большая величина напряженности
электрического поля.
Напряжение пробоя с ростом температуры
должно увеличиваться. В сильнолегированных
полупроводниках при росте температуры
ширина запрещенной зоны падает,
вероятность тунеллирования носителей
увеличивается, а напряжение пробоя
уменьшается. Следовательно, высоковольтные
и низковольтные стабилитроны должны
иметь противоположные изменения величины
стабилизации при изменении температуры
Основные параметры стабилитрона:
-
напряжение стабилизации
-
минимальный и максимальный токи стабилизации
Стабисторы
Для стабилизации небольших напряжений
(меньше 1В) используют прямую ветвь ВАХ.
Предназначенные для этого полупроводниковые
диоды называют стабисторами.
Кремниевые стабисторы имеют напряжение
стабилизации около 0,7В. Для получения
малого сопротивления базы диода и
меньшего прямого дифф. сопротивления
используют кремний с повышенной
концентрацией примеси. Стабисторы могут
выполняться на основе других
полупроводниковых материалов.
1 .Проводники, изоляторы, полупроводники. Их зонные энергетические диаграммы
2. Собственная
электропроводность полупроводников.
3. Электронная
электропроводность полупроводников.
4. Дырочная
электропроводность полупроводников.
5. Электронно-дырочный
переход. Виды пробоя электронно-дырочного
перехода.
6. Механизм
туннельного пробоя электронно-дырочного
перехода.
7.
Прямое и обратное включение р-п-перехода.
8. Переход
металл-полупроводник.
9. ВАХ
р-n-перехода
и перехода металл-полупроводник.
10. Ширина и емкость
электронно-дырочного перехода.
11.
Эквивалентная схема р-п-перехода.
12.
Переходные процессы в p—n-переходе.
13. Основные виды
диодов и технологии их производства.
14. Выпрямительные
диоды.
15. Стабилитроны
и стабисторы.
16. Высокочастотные
и импульсные диоды.
17. Диоды с
накоплением заряда.
18. Туннельные и
обращенные диоды.
19. Диоды
сверхвысокочастотные.
20. Устройство,
конструктивно-технологические
особенности, схемы включения биполярных
транзисторов.
21. Режимы работы
биполярных транзисторов, статические
параметры, физические процессы.
22. Модель Эберса
— Молла.
23.
Статические
характеристики в схеме с общим эмиттером.
24. Устройство и основные виды полевых транзисторов. Полевые транзисторы с управляющим
переходом.
25. Устройство и основные виды полевых транзисторов. Полевые транзисторы с изолированным
затвором.
- ВОПРОС 16
- высокочастотные диоды предназначены
для детектирования колебаний высокой
частоты и используются в радиоприемной,
телевизионной и другой аппаратуре. - Они могут быть точечными, дифф-ными,
сплавными или иметь мезаструктуру.
- Рис 31 конструкция ВЧ диода. 1 – внешние
выводы; 2 – кристалл; 3 – стеклянный
корпус; 4 – вольфрамовый электрод - Рис 32 а) эквивалентная схема p—n
перехода; б) ВАХ точечного германиевого
диода
Эквивалентная схема кроме сопротивления
перехода и емкости перехода содержит
сопротивление растекания. Его величина
определяется геометрическими размерами
и конфигурацией точечного перехода.
Если предположить, что контакт имеет
полусферическую форму, то величина
сопротивления растекания приближенно
может быть определена: ,
где
png» width=»18″>-
удельное объемное сопротивление
полупроводника;-
радиус закругления контакта.
Барьерная емкость точечных диодов не
превышает 1пФ, их рабочая частота
достигает 150МГц.
Высокочастотные кремниевые диоды в
конструктивном отношении не отличаются
от германиевых. ВАХ кремниевых
микросплавных диодов близки к
теоретическим, если эксплуатация диодов
соответствует паспортным режимам.
Импульсные диоды
Импульсные диоды предназначены для
работы в устройствах импульсной техники.
Особенностью их работы является
значительное проявление эффектов
накопления и рассеивания носителей при
больших уровнях мощность переключающего
сигнала.
Переходы импульсных диодов изготавливаются
такими же методами, как и высокочастотные.
Рис 33 конструкция импульсных диодов.
1 – кристаллодержатель; 2 – стеклянный
корпус; 3 – коваровая трубка; 4 – внешние
выводы; 5 – контактная пружина; 6 –
кристалл; 7 – припой.
Основные параметры высокочастотных и
импульсных диодов
-
постоянное прямое напряжение при заданном прямом токе
-
максимальная величина обратного тока при максимальной величине обратного напряжения
-
емкость диода при заданной величине обратного напряжения
-
время восстановления обратного сопротивления
-
постоянное и импульсное обратные напряжения
-
средний выпрямленный ток
-
импульсный прямой ток
-
частота без снижения параметров, соответствующих паспортному режиму
-
диапазоны рабочих температур.
Источник: https://studfile.net/preview/715255/page:7/
Выпрямители. Виды и устройство. Структура и особенности
Выпрямители это электротехнические устройства, которые служат для получения из переменного напряжения, постоянного. Главными компонентами выпрямителей являются вентили и трансформатор. Они создают условия протекания тока в нагрузочной цепи в одну сторону, то есть, выпрямляют его. Из переменного напряжения образуется постоянное с наличием пульсаций.
Чтобы сгладить полученные импульсы выпрямленного напряжения, после выхода выпрямителя подключают выравнивающий фильтр, состоящий из емкостей, дросселей и сопротивлений. Для выравнивания и регулировки полученного тока и напряжения к выходу сглаживающего фильтра подключают схему стабилизатора. Такие устройства часто подключают и на входе устройства на переменный ток.
Режимы функционирования и свойства отдельных компонентов выпрямителя, стабилизатора, регулятора и фильтра согласовывают с определенными условиями эксплуатации нагрузки потребителя.
Поэтому главной задачей при проектировании устройств выпрямления является расчет соотношений, дающих возможность определить по режиму эксплуатации потребителя электрические свойства и параметры компонентов стабилизатора и других частей.
Далее необходимо рассчитать эти элементы и выбрать по каталогу в торговой сети.
Устройство и структура выпрямителя
Рис. 1
Выпрямители в общем виде можно изобразить структурной схемой (Рис. 2), в которую входит:
1 — Силовой трансформатор. 2 — Диодный мост, состоящий из диодов. 3 — Устройство фильтрования.
4 — Нагрузочная цепь со стабилизатором.
Рис. 2
Силовой трансформатор
Это устройство предназначено для согласования напряжений на входе и выходе выпрямительного устройства (Рис. 1 — а). Другими словами, трансформатор осуществляет разделение сети нагрузки и сети питания.
Существуют всевозможные варианты схем соединения обмоток этого трансформатора, выбор которых зависит от типа схемы выпрямления устройством.
На величину выходного напряжения трансформатора U2 влияет величина напряжения на выходе выпрямительного моста Uн.
Трансформатор способен выполнить гальваническую развязку частоты f1 с сетью питания U1, I1, и нагрузочную цепь с Uн, Iн одновременно.
В настоящее время появилась возможность проектировать и производить инверторы высокого напряжения, функционирующие на повышенной частоте и выпрямляющие напряжение.
Для этого применяются схемы бестрансформаторного выпрямления, в которых блок вентилей подключается сразу к первичной сети питания.
Диодный мост
Этот блок выполняет основную функцию в устройстве выпрямителя, преобразуя переменный ток в постоянный (Рис. 1 — б). В блоке применяются чаще всего элементы в виде диодов.
На выходе блока вентилей снимается постоянное напряжение, имеющее повышенный уровень импульсов, который зависит от числа фаз сети питания и схемой выпрямителя.
Устройство фильтрования
Фильтрующая часть выпрямителя обеспечивает необходимый уровень пульсаций напряжения на выходе выпрямителя в соответствии с предъявляемыми требованиями нагрузки (Рис. 1 — в). В схеме фильтрующего устройства применяются сглаживающий дроссель или сопротивление, подключенные последовательно, и конденсаторы, подключенные параллельно выходу питания.
Однако чаще всего фильтры выполняют по схемам несколько сложнее. В маломощных выпрямителях нет необходимости в применении дросселя и резистора. В схемах выпрямителей для трехфазной сети величина импульсов меньше, тем самым становятся легче условия функционирования фильтра.
Стабилизатор напряжения
Устройство стабилизации напряжения предназначено для снижения внешнего влияния на выходное напряжение.
Воздействиями могут быть: изменение частоты тока, температуры, перепады напряжения и другие факторы.
В конструкции стабилизатора используются полупроводниковые элементы в виде стабилитронов, тиристоров, симисторов и других полупроводников, устройство и работа которых будет рассмотрена отдельно.
Классификация
Выпрямители, выполненные на основе полупроводниковых элементов, классифицируются по различным признакам.
По мощности на выходе:
- Повышенной мощности – свыше 100 киловатт.
- Средней мощности – менее 100 кВт.
- Малой мощности – до 0,6 киловатт.
По фазности сети питания:
По количеству импульсов одного полюса выпрямленного напряжения U2 за один период:
- Однотактные (имеют один полупериод).
- Двухтактные (два полупериода).
По типу управления вентилями выпрямители делятся на:
- Управляемые. В схеме применяются транзисторы, тиристоры.
- Неуправляемые. Используются диоды.
Выпрямители разделяют для следующих видов нагрузки:
- Активно-емкостная.
- Активно-индуктивная.
- Активная.
Расчет выпрямителя
Характер нагрузки, формы потребления тока влияют на способы расчета выпрямителя, и значительно отличаются. Расчет выпрямителя выполняется путем подбора схемы выпрямителя, вида вентилей, определения нагрузки на трансформатор, фильтр и диоды, энергетических и электрических параметров.
Ряд факторов влияет на выбор схемы прибора. Эти факторы необходимо учитывать согласно предъявляемому требованию к выпрямителю.
К таким факторам можно отнести:
- Мощность и напряжение.
- Пульсация и частота напряжения на выходе.
- Значение обратного напряжения на диодах и их количество.
- Коэффициент мощности и другие параметры.
- КПД.
Коэффициент применения трансформатора по мощности оказывает большое влияние на расчет выпрямителя. Этот параметр вычисляется формулой:
Где Id, Ud, — средние величина выпрямленного тока и напряжения, I1, U1 — рабочая первичная величина тока и напряжения, I2, U2 – рабочая величина вторичного тока и напряжения.
При повышении коэффициента использования трансформатора размеры прибора в общем уменьшаются, а КПД увеличивается.
Схемы выпрямления
Однофазные выпрямители
Схемы приборов для подключения к питанию однофазной сети используются чаще всего для бытовых электрических устройств. В них применяются однофазные трансформаторы, функционирующие с фазой и нолем. Обе обмотки трансформатора таких приборов являются однофазными.
Однофазная однотактная схема
Однополупериодная схема чаще всего используют для выравнивания токов малой мощности (несколько миллиампер), когда нет необходимости идеального выравнивания напряжения на выходе выпрямителя. Такая схема характерна значительными пульсациями выходного напряжения и малым коэффициентом использования трансформатора.
На диаграмме видна работа однотактного выпрямителя на активную нагрузку.
Нагрузочный ток id под воздействием ЭДС вторичной обмотки (е2) может пройти только за те полупериоды, на которых анод диода обладает положительным потенциалом по отношению к катоду. По диоду в первый полупериод протекает ток ivd, а во второй полупериод ток становится нулевым (при отрицательном потенциале анода).
Напряжение на выходе выпрямителя ud всегда ниже ЭДС обмотки е2, из-за того, что определенная часть напряжения теряется. Наибольшее обратное сопротивление вентиля Uобрmax достигает амплитудной величины ЭДС вторичной обмотки.
Диаграммы токов обеих обмоток трансформатора аналогичны, если не считать ток намагничивания и удалить из него величину Id, так как она не трансформируется в первичную обмотку. Из-за этой величины в сердечнике трансформатора образуется вспомогательный магнитный поток, который насыщает сердечник.
Такой эффект называется вынужденным подмагничиванием. Это можно выделить, как основной недостаток схемы. После насыщения ток намагничивания трансформатора повышается по сравнению с нормальным режимом. Повышение этого тока создает условия для увеличения сечения проводника первичной обмотки. Вследствие этого возрастают размеры трансформатора.
Похожие темы:
Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/jelektropitanie/vypriamiteli/