Блуждающие токи: причины возникновения и способы защиты от них

Всем знакомо понятие электрического тока. Есть проводник, по нем движутся заряженный частицы, на противоположных концах (или в двух произвольных точках) возникает разность потенциалов.

Использование этого физического явления для организации электропитания — безусловное благо цивилизации.

Появляется возможность передавать электроэнергию на значительные расстояния, приводить в движение механизмы, получать тепло, изображение, звук, преобразовывать электрическую энергию в механическую.

А если движение заряженных частиц возникает в естественном проводнике, например — в грунте? Это явление называется «блуждающие токи».

Их появление не сулит ничего хорошего: возникает опасность поражения электротоком, разрушаются элементы металлических конструкций, расположенных в земле.

Кроме того, на «обеспечение» блуждающих токов тратится определенное количество энергии. То есть, возникает незапланированный перерасход.

Как возникает это явление

Рассмотрим блуждающие токи на примере электрифицированной железной дороги, под которой проложен трубопровод.

Блуждающие токи: причины возникновения и способы защиты от них

Питание электропоезда осуществляется с помощью двух контактных линий: фазный провод — это контактная сеть, расположенная на опорах-столбах и подвешенная на массивных изоляторах.

А нулевой «провод» — это рельсы.

На всем пути следования располагаются тяговые подстанции, которые работают по одинаковому принципу: нулевой потенциал соединен с физической «землей» в качестве заземления (зануления).

Блуждающие токи: причины возникновения и способы защиты от них

Поскольку рабочее заземление в любом случае имеет физический контакт с грунтом, это абсолютно безопасно.

Для информации:

Не следует путать прохождение виртуальной линии проводника заземления с шаговым напряжением, возникающим из-за разности потенциалов на небольшом участке. Точки разности потенциалов в ситуации с блуждающими токами разнесены на сотни метров, а то и километры.

Между нулевым и фазным проводниками (рельсы и контактный провод) протекает рабочий электрический ток. Он штатно возникает при соединении колес с рельсами и пантографа электровоза с контактной линией.

Поскольку рельсы непосредственно связаны с грунтом, можно предположить, что в земле также возникает потенциал, равный потенциалу нулевого проводника. Если он одинаковый на всем протяжении рельсового пути – нет проблем, это нормальная и безопасная ситуация.

Но железная дорога редко прокладывается по прямой. Кроме того, электрическая связь между физической землей и металлом ж/д пути не всегда стабильна.

Получается, что от одной тяговой подстанции до рядом стоящей (несколько десятков километров) электрический ток может протекать как по рельсу, так и по грунту. То есть, электроны могут блуждать по кратчайшему пути.

  • Вспоминаем про кривизну ж/д пути, и получаем те самые блуждающие токи, протекающие в толще грунта.
  • Блуждающие токи: причины возникновения и способы защиты от них
  • А если в этом месте проложены коммуникации (например, стальной трубопровод), то электроны протекают по его стенкам (смотреть иллюстрацию).

Где проблема

По аналогии с обычными электрическими процессами, возникает электрохимическая реакция. Блуждающий ток стремится по пути наименьшего сопротивления (мы же понимаем, что грунт в сравнение с металлической трубой является худшим проводником).

В том месте, где проводимость между рельсами и трубопроводом самая высокая (мокрая земля, железистый грунт, и другие причины), возникает так называемая катодная зона с точки зрения трубопровода. Электрический ток как бы «затекает» в трубу.

Пока еще это не опасно: трубопровод расположен в грунте, разницы потенциалов нет, у вас из крана не потечет вода под напряжением 3000 вольт.

Пройдя по трубе до благоприятного места перетекания в рельсы, электроны устремляются по грунту в сторону «штатного» проводника. Возникает анодная зона, электроток «вытекает» из трубы, прихватывая за собой частички металла (на молекулярном уровне).

По всем законам протекания электрохимических процессов, на этом участке интенсивно развивается коррозия.

Водопроводчики недоумевают: труба из качественной стали, прошла все возможные антикоррозийные обработки, уложена согласно техническим условиям, срок эксплуатации минимум 50 лет. И вдруг прорыв и проржавевшая дыра размером с ладонь.

И это все за каких-то пару лет. Причем электрохимической коррозии подвергается любой металл, будь то сталь, медь или алюминий.

Блуждающие токи: причины возникновения и способы защиты от них

Никакой связи с влажностью почвы нет, разве что блуждающие токи выбирают «мокрое место» для формирования анодной и катодной зоны. Это страшный сон аварийных бригад водоканала. Если не согласовывать проекты между отраслевыми ведомствами — проблема становится неконтролируемой.

Побочный эффект, усугубляющий потери

Напротив катодной зоны «жертвы», то есть трубопровода, возникает анодная зона рельсового пути. Это логично: если электроток куда-то входит, он должен откуда-то выходить, точнее вытекать.

Это ближайшее с точки зрения электропроводности грунта место, где рельс имеет электрический контакт с физической землей (грунтом). В этой точке происходят аналогичные электрохимические разрушения металла железнодорожного полотна.

А вот это уже проблема, связанная с безопасностью людей.

Блуждающие токи: причины возникновения и способы защиты от них

Кстати, эта ситуация характерна не только для магистральных железных дорог и трубопроводов. Да и прокладываются они не всегда параллельно друг другу. А вот в городе, где рядом с многочисленными подземными коммуникациями проходят трамвайные пути, возникает такое количество разнонаправленных блуждающих токов, что впору задуматься о комплексных мерах защиты.

Блуждающие токи: причины возникновения и способы защиты от них

На примере железной дороги, мы разобрали принцип негативного влияния паразитных токов. Эти процессы запрограммированы (если можно так сказать) самой конструкцией,

А где еще существует «блуждающая» проблема

Там, где генерируется электрическая энергия (что довольно логично). Разумеется, в эту «группу риска» входят не только электростанции. Там более, что на таких объектах подобных проблем практически не существует. Блуждающие токи возникают на пути следования электроэнергии к потребителю. Точнее, в точках преобразования напряжения: в зонах действия трансформаторных подстанций.

Блуждающие токи: причины возникновения и способы защиты от них

Нам уже понятно, что для появления этих самых паразитных токов необходима разность потенциалов. Представим типовую трансформаторную подстанцию, в которой применяется система заземления TN-C. При изолированной нейтрали, заземляющие контуры соединены между собой нулевым проводником, обозначаемым аббревиатурой PEN.

Блуждающие токи: причины возникновения и способы защиты от них

Получается, что по этому проводнику протекает рабочий ток всех потребителей на линии, с одновременным их заземлением. Эта линия (PEN) имеет собственное сопротивление, соответственно в разных ее точках происходит падение напряжения.

PEN (он же заземляющий проводник) получает банальную разность потенциалов между ближайшими контурами заземления. Возникает «неучтенный» ток, который по описанному выше принципу протекает и по физической земле, то есть в грунте.

Если на его пути появляется попутный металлический проводник, блуждающий ток ведет себя так же точно, как в трубе под железнодорожным полотном.

То есть, в анодной зоне разрушает металл проводника (трубопровод, арматура железобетонных конструкций, оболочка кабеля), а в катодной зоне уничтожает PEN-проводник.

Пробой изоляции

Ситуация с нарушением изолирующей оболочки кабеля может возникнуть где угодно. Вопрос в том, какие будут последствия.

Предположим утечку фазы в грунт на значительном расстоянии от рабочего контура заземления.

Если сила тока достаточно большая (точка пробоя большой площади), созданы «благоприятные» условия: влажный грунт, и прочее — достаточно быстро сработает защитная автоматика, и линия будет отключена.

А если сила тока меньше, чем ток «отсечки» автомата? Тогда между «пятном» утечки и «землей» возникают долгоиграющие блуждающие токи. А дальше вы знаете: попутный трубопровод, кабель в металлической оболочке, анодная зона, электрохимическая коррозия…

Собственно, группа риска определена:

  • Трубопроводы с металлическими стенками. Это может быть вода, канализация, нефте- или газопроводы.
  • Кабельные линии (силовые, сигнальные, информационные) с металлической оболочкой.
  • Металлическая арматура в конструкциях дорог или зданий.
  • Габаритные цельнометаллические сооружения. Например, емкость (танк) для хранения нефтепродуктов.

Защита от блуждающих токов

На самом деле, полноценной защиты от этой проблемы нет. Ее просто не может быть с точки зрения физики. Единственный действенный метод — подсунуть всепожирающим блуждающим токам иную жертву, которую не так жалко. Мало того, у этого приспособления и название соответствующее: «жертвенный анод». А методика именуется катодной защитой.

Принцип работы в исключении анодных зон на защищаемом объекте. Вместо них используются те самые жертвенные аноды, которые меняют по мере их электрохимического разрушения. А вокруг объекта формируются лишь безопасные для него катодные зоны.

Для того, чтобы система функционировала, требуется дополнительная энергия. В критических местах устанавливаются так называемые станции катодной защиты, которые запитаны от линий электропередач.

Блуждающие токи: причины возникновения и способы защиты от них

Это связано с некоторыми затратами, которые несравнимы с потерями на ремонт и восстановление испорченных объектов (трубопровода, кабеля и прочего).

А если защищаемый объект относится к опасной категории (например, нефтехранилище, в котором в результате электрохимической коррозии может произойти утечка продукта), то стоимость защитных устройств вообще не берется во внимание.

Блуждающие токи: причины возникновения и способы защиты от них

Недостатки систем катодной защиты

Методика отнюдь не универсальна, необходимо строить каждый объект под конкретные условия эксплуатации.

При неправильных расчетах силы защитного тока, происходит так называемая «перезащита», и уже катодная станция является источником блуждающих токов.

Поэтому, даже после монтажа и введения в строй, катодные системы постоянно контролируются. Для этого в разных точках монтируются специальные колодцы для замера силы тока защиты.

Контроль может быть ручным или автоматическим. В последнем случае устанавливается система слежения за параметрами, соединенная с аппаратурой управления катодной станцией.

Дополнительные способы защиты от блуждающих токов

  • Применение кабельных магистралей с внешней оболочкой, которая является хорошим диэлектриком. Например, из сшитого полиэтилена.
  • При проектировании систем энергоснабжения, использовать только системы заземления типа TN-S. В случае капитального ремонта сетей, заменять устаревшую систему TN-C.
  • При расчете маршрутов железнодорожных путей и подземных коммуникаций, по возможности разносить эти объекты.
  • Использовать под рельсами изолирующие насыпи, из материалов с минимальной электропроводностью.

Видео по теме



Источник: https://ProFazu.ru/elektrosnabzhenie/bezopasnost-elektrosnabzhenie/bluzhdayushhie-toki.html

Блуждающие токи: причины возникновения и способы защиты от них

Последние 10-20 лет во многих мегаполисах наблюдается резкое снижение срока службы подземных металлических сооружений (трубопроводов горячего и холодного водоснабжения, системы отопления и т.д.).

После проведения ряда экспертиз было установлено, что основная причина разрушения металла — электрохимическая коррозия, которую вызывают блуждающие токи.

Из данной статьи Вы узнаете о природе этого явления, а также получите представление о способах защиты подземных сооружений и инженерных коммуникаций от гальванической коррозии.

Что такое блуждающий ток?

Как известно, земля является проводником электрического тока, что позволяет применять это свойство для создания заземляющих устройств. Но в тоже время, когда почва выступает в качестве токопроводящей среды, в ней образуются утечки. Поскольку нельзя спрогнозировать в какое время начнется процесс, и где он будет протекать, то такие проявления получили термин «блуждающие».

Причины и источники возникновения

Как мы помним из школьного курса физики, для образования электрического тока необходимо, чтобы возникла разность потенциалов между двумя участками цепи. Принцип возникновения блуждающих токов – аналогичный. Только роль проводника в данном случае исполняет земля.

На территории современных городов и населенных пунктов находится множество электрифицированных объектов, начиная от ЛЭП и заканчивая рельсовым транспортом, включая оборудование тяговых подстанций.

Их объединяет один фактор – расположение на земле. Это приводит к довольно специфичному взаимодействию с последней, проявляющемуся в виде появления блуждающих токов.

Ниже представлена таблица, которой приводятся их потенциальные источники и условия образования электросвязи связи с почвой.

Таблица 1. Потенциальные источники.

Название объекта Взаимосвязь с землей
Различные виды распределительных устройств, оборудование подстанций, ВЛ с нулевым проводником (глухозаземленная нейтраль), подключенным к повторным заземлителям. При наличии на объекте ЗУ.
ВЛ сетей с изолированной нейтралью, кабельные магистрали. Возникает при повреждении изоляционного покрытия токонесущих элементов кабелей.
Рельсовый электротранспорт, системы с заземленной нейтралью. Наличие технологической связи между одним из проводников и землей.

Механизм образования блуждающих токов

В таблице мы привели в качестве примера несколько источников, теперь рассмотрим подробно, как в них образуется интересующий нас процесс. Как уже упоминалось выше, чтобы он появился, между двумя точками на земле должно произойти возникновение разности потенциалов. Такие условия создаются контурами ЗУ систем с глухоизолированной нейтралью.

Нулевой провод (PEN) одним концом соединен с ЗУ электроподстанции, а вторым подключен к шине PEN потребителя, которая соединена с заземляющим устройством объекта.

Соответственно, разница электрических потенциалов между выводами нулевого проводника будет передаваться ЗУ, что создаст условия для образования цепи.

Величина утечки будет незначительной, поскольку основная нагрузка пойдет по пути наименьшего сопротивления (нулевому проводнику), но, тем не менее, часть ее пойдет по земле.

Блуждающие токи: причины возникновения и способы защиты от нихОбразование блуждающих токов между ЗУ нулевого провода

Практически аналогичные условия образуются, когда возникают проблемы с изоляцией проводов (разрушение оболочек) кабельных магистралей или ВЛ. При возникновении КЗ на землю, в этой точке потенциал равный или близкий к фазе. Это вызывает образование тока утечки к ближайшему ЗУ с потенциалом PEN-провода.

В приведенном примере о постоянной утечке переменных токов речь не идет, поскольку согласно действующим нормам на поиск и устранение повреждения отводится два часа. При этом, в большинстве случаев, отключение поврежденной линии или локализация участка с КЗ производится автоматически. Процесс может существенно затянуться, если сила тока КЗ ниже аварийного порога.

Как показывает практика, наибольшая доля источников токов постоянной утечки приходится на городской и пригородный рельсовый электротранспорт. Механизм их образования продемонстрирован ниже.

Блуждающие токи: причины возникновения и способы защиты от нихРельсовый электротранспорт в качестве источника блуждающих токов

Обозначения:

  1. Контактный провод, от которого получает питание силовая установка электротранспорта.
  2. Питающий фидер (подключен к контактному проводу).
  3. Одна из тяговых подстанций, питающая сети трамваев.
  4. Дренажный фидер (подключен к рельсам).
  5. Рельсы.
  6. Трубопровод на пути прохождения блуждающих токов.
  7. Анодная зона (положительные потенциалы).
  8. Катодная зона (отрицательные потенциалы).

Как видно из рисунка, постоянное напряжение в тяговую сеть поступает с подстанции и по рельсам возвращается обратно. При недостаточном сопротивлении рельсовых путей относительно земли, в грунте возникают электрические блуждающие токи. Если на пути распространения утечки блуждающих токов находится трубопровод или другая металлическая конструкция, то она становится проводником электричества.

Это связано с тем, что ток распространяется по пути наименьшего сопротивления. Соответственно, как только появляется проводник, ток будет распространяться по металлу, поскольку его электрическое сопротивление меньше, чем у земли. В результате участок трубопровода, через который проходит электроток, будет в большей степени подвержен коррозии металла. О причинах этого рассказано ниже.

Связь блуждающего тока и коррозии на металле

Ввиду наличия в земле воды и растворенных в ней солей любая металлическая конструкция в почве подвержена коррозии. Но если металл помимо этого подвергается воздействию блуждающих токов, то процесс приобретает электролитическую природу.

Согласно закону Фарадея скорость электрохимической реакции напрямую зависит от тока, протекающего между анодом и катодом.

Следовательно, на скорость коррозии металлической трубы (уложенной в грунте) будет влиять электрическое сопротивление почвы, а также сложная природа процессов, протекающих в катодной и анодной зоне.

В результате металлическая конструкция помимо обычной коррозии подвергается воздействию токов утечки. Это может стать причиной образования гальванической пары, что существенно ускорит процесс коррозии.

На практике отмечались случаи, когда участок трубопровода системы водоснабжения, подвергавшийся гальванической коррозии выходил из строя через два года, при расчетном сроке эксплуатации 20 лет.

Пример такого воздействия представлен ниже.

Блуждающие токи: причины возникновения и способы защиты от нихТруба после воздействия блуждающих токов

Способы защиты от блуждающих токов

Для предотвращения пагубного воздействия электрохимического потенциала применяются методы защиты, которые могут отличаться в зависимости от особенностей металлических конструкций. Рассмотрим в качестве примера способы защиты водопроводных труб, полотенцесушителей и газопроводов, начнем в порядке данной очередности.

Видео про различные защиты от блуждающих токов

Защита водопроводных труб

Для проложенных в земле металлоконструкций, в частности водопроводных труб, применяются две методики защиты: пассивная и активная. Подробно опишем каждую из них.

Пассивная защита

Данная методика предусматривает нанесение на поверхность металлоконструкций специального изолирующего слоя, образующего защитный барьер между землей и металлической оболочкой. В качестве изоляционного материала используются полимеры, различные виды эпоксидных смол, битумное покрытие и т.д.

Блуждающие токи: причины возникновения и способы защиты от нихПример защитного покрытия трубы для подземной укладки

К сожалению, современная технология не позволяет создать защитный барьер, обеспечивающий полную изоляцию.

Любое покрытие обладает определенной диффузионной проницаемостью, поэтому при данном способе возможна только частичная изоляция от грунта.

Помимо этого следует учитывать, что в процессе транспортировки и монтажа может быть нанесено повреждение защитному слою. В результате на нем образуются различные дефекты изоляции в виде микротрещин, царапин, вмятин и сквозных повреждений.

Поскольку рассмотренный метод не обладает достаточной эффективностью, он применяется в качестве дополнения активной защиты, о которой пойдет речь далее.

Активная защита

Под данным термином подразумевается управление механизмами электрохимических процессов, которые протекают в местах контакта металлических конструкций с образующимся в грунте электролитом. Для этой цели применяется катодная поляризация, при которой отрицательный потенциал смещает естественный.

Реализовать такую защиту можно гальваническим методом или используя источник постоянного тока.

В первом случае применяется эффект гальванической пары, в которой анод, подвергается разрушению (жертвенный анод), защищая при этом металлоконструкцию, у которой потенциал несколько ниже (см. 1 на рис.5).

Описанный способ эффективен для грунтов с низким сопротивлением (не более 50,0 Ом*м), при более низком уровне проводимости данный метод не применяется.

Применение источника постоянного тока в катодной защите позволяет не зависеть от сопротивления грунта. Как правило, источник изготовлен на базе преобразователя, запитанного от электрической цепи переменного тока. Конструктивное исполнение источника позволяет задать уровень защитных токов в соответствии со сложившимися условиями.

Блуждающие токи: причины возникновения и способы защиты от нихРисунок 5. Варианты реализации катодной защиты

Обозначения:

  1. Применение жертвенного анода.
  2. Метод поляризации.
  3. Проложенная в земле металлоконструкция.
  4. Закладка в грунте жертвенного анода.
  5. Источник постоянного тока.
  6. Подключение к источнику малорастворимого анода.

Защита полотенцесушителей

Полотенцесушителям и другим оконечным металлическим устройствам на водопроводных трубах (смесителям) коррозия, вызванная блуждающими токами, не угрожала до тех пор, пока в быту не стали широко применяться пластиковые трубы. Даже, если в Вашем стояке установлены металлические трубы, не факт, что у соседа снизу они не пластиковые, да и для отводов в ванную и кухню наверняка используется пластик.

Чтобы обеспечить защиту от аварийных утечек тока и не допустить электрокоррозии, необходимо выровнять потенциалы, заземлив полотенцесушитель, водопроводные трубы в стояке, а также батарею отопления.

Защита газопроводов

Защита подземных газопроводов от блуждающих токов, которые вызывают коррозию, осуществляется точно так же, как и для водопроводных труб. То есть применяется один из двух вариантов активной катодной защиты, принцип работы которой рассматривался выше.

Как измерить блуждающие токи?

Для оценки опасности от токов утечки производится комплекс измерительных работ, куда входит:

  • Измерение уровня тока и направление его движения по оболочкам кабелей магистральной линии.
  • Измерение разности потенциалов между контактных рельсов (рельсовой сетью) и проложенными в земле металлическими конструкциями.
  • Измерение изоляции рельсов от грунта на контрольных участках рельсового полотна.
  • Оценка плотности тока утечки с оболочки кабельных линий в грунт.

Измерения величины блуждающих токов производятся специальными приборами. При этом выбирается время, на которое приходится максимальный трафик рельсового электротранспорта.

Блуждающие токи: причины возникновения и способы защиты от нихНабор инструментов для измерения блуждающих токов

Процесс измерения блуждающих токов выполняется в трансформаторных и тяговых подстанциях расположенных рядом с рельсовыми путями. При этом один из электродов, подключенных к измерительному прибору, соединяют с ЗУ, а второй, втыкается в землю в 10-и метрах от тяговой подстанции. Если между потенциалами на электродах появляется разность, она фиксируется прибором.

Рекомендуем также почитать:

Источник: https://www.asutpp.ru/bluzhdayuschie-toki.html

Что такое блуждающие токи и как от них избавиться?

Блуждающие токи — это такой вид направленного движения заряженных частиц, возникновение которых происходит в земле, когда она выступает в качестве проводника.

Данное явление приводит к разрушению металла, находящегося в почве или даже просто соприкасающегося с ней, в чем и заключается основная опасность.

Далее будет подробно рассмотрен физический феномен под названием блуждающие токи, причины возникновения этого явления и меры защиты от него.

Причины возникновения

Современную жизнь невозможно представить без электрифицированных объектов.

Энергопотребление растет с каждым годом, что влечет за собой строительство новых трансформаторных и распределительных подстанций, кабельных и воздушных ЛЭП, внешних контактных сетей для электропоездов и контактных рельсов для метро.

Так как земля сама по себе является проводником, а все эти объекты находятся на ее поверхности или под ней, то между ними возникает определенный вид связи.

Блуждающие токи: причины возникновения и способы защиты от них

Для возникновения электрического тока необходима разность потенциалов между двумя точками проводника. То же самое утверждение справедливо и для блуждающих токов, за исключением того, что проводником в этом случае выступает земля.

В системе с изолированной нейтралью, разность потенциалов обеспечивается контурами заземления. В случае если нулевой проводник соединен с контуром заземления, его собственное сопротивление, при прохождении заряда по нему, будет причиной падения напряжения.

Такой проводник обозначается PEN.

Основание PEN-проводника соединяется с контуром заземления трансформаторной подстанции. На входе к потребителю он соединяется с ЗУ здания. Оба этих ЗУ на противоположных концах кабеля обеспечивают разность потенциалов, которая, в свою очередь, приводит к образованию блуждающего тока между ними.

Сходный процесс наблюдается при повреждении изоляции ЛЭП. Если происходит замыкание на землю, то земля на этом участке становится носителем этого потенциала. Большинство повреждений такого рода устраняется автоматикой. Но это в том случае, если происходит большая утечка. При малых значениях, локализовать и нейтрализовать причину довольно проблематично.

Транспортные средства, работающие на электрической тяге (за исключением автомобилей, которые работают с помощью автономных электродвигателей) являются основной причиной возникновения этого нежелательного явления.

Троллейбусы подключаются к электрической сети посредством специальных штанг, которые соединяются с нулевым и фазным проводами и расположены на самом транспортном средстве.

Поэтому данный вид транспорта не генерирует большие блуждающие токи.

Питание электропоезда осуществляется несколько по иному принципу. Нулевой проводник подключается к рельсам, а фазный – монтируется над путями. С помощью пантографов, располагающихся на крыше и непосредственно контактирующих с питающим кабелем, осуществляется подача электроэнергии к двигателю.

Блуждающие токи: причины возникновения и способы защиты от них

Питание этих сетей обеспечивают тяговые подстанции, которые располагаются по всему маршруту примерно на одинаковом расстоянии друг от друга.

Основной причиной возникновения блуждающих токов в данной системе является искривленность маршрута. Электрический заряд проходит по пути наименьшего сопротивления.

Соответственно, если представится возможность «резать углы», то он будет идти по земле, а не по рельсам.

На видео ниже подробно рассматривается, что это за явление и как оно возникает:

Воздействие на металлические объекты

В земле находится множество металлических объектов, таких как: различные системы трубопроводов, бронированные кабельные линии, железобетонные фундаменты строений. Так как металл является лучшим проводником по сравнению с землей, то электроток будет проходить по нему, а не по грунту. Место входа называется «катодная зона». Место выхода – «анодная зона».

Блуждающие токи: причины возникновения и способы защиты от них

Отдельно хотелось бы рассмотреть коррозийные процессы в водопроводных трубах. Подземные воды содержат в себе множество растворимых веществ и являются хорошим проводником.

Например, в трубопроводе, находящемся в грунте, образуется коррозия в результате процесса электролиза. Это особенно выражено на участке анодной зоны.

В катодной зоне поражения конструкций носят менее разрушительный характер.

В результате крайне разрушительного воздействия на все вышеперечисленные объекты, блуждающие токи способны нанести существенный экономический ущерб.

Способы защиты

Самым распространенным способом борьбы с этим явлением является установка катодной защиты. Для этого нужно исключить образование анодной зоны на защищаемой конструкции и оставить лишь катодную.

Станция катодной защиты генерирует постоянный ток, подключаясь отрицательным полюсом к металлоконструкции, которую необходимо защитить, а положительным – к так называемым «жертвенным» анодам, которые забирают на себя основную часть разрушительной силы.

Также на защищаемый объект наносятся специальные защитные покрытия, которые препятствуют образованию коррозийного слоя.

  • Схема СКЗ:
  • Блуждающие токи: причины возникновения и способы защиты от них
  • Недостатками данной схемы являются:
  • так называемая «перезащита» — когда превышается защитный потенциал и защищаемая металлоконструкция подвергается коррозии;
  • неправильный расчет защиты, при котором происходит ускоренное коррозийное поражение близ расположенных металлических объектов.

К сожалению, данная проблема затрагивает не только промышленные объекты, но и обычных людей. В полотенцесушителе, как и в системе отопления в целом, циркулирует горячая вода, которая является отличным проводником (если, конечно, она не дистиллированная).

Если трубопроводы и примыкающие к ним элементы, которые находятся в жилом помещении, должным образом не заземлены, то они могут быть подвержены появлению на их поверхности нежелательного потенциала и, соответственно, пятен ржавчины.

Грамотное заземление поможет предотвратить все эти негативные последствия, поэтому на сегодняшний день такой способ защиты от блуждающих токов в квартире и частном доме является одним из наиболее эффективных.

Методы измерений

При прокладке трубопровода, блуждающие токи вычисляются путем измерения разности потенциалов между двумя точками поверхности земли, перпендикулярных друг другу и находящимся на равно удалении в 100 м. Измерения производятся через каждый километр.

Блуждающие токи: причины возникновения и способы защиты от них

Приборы для измерений должны обладать классом точности не менее 1,5 и собственным сопротивлением от 1 МОм. Разность потенциалов между измерительными электродами не должна превышать 10 мВ. По времени одно измерение должно продолжаться не менее 10 мин, с фиксированием результата каждые 10 с.

Измерения в зоне действия электротранспорта нужно проводить во время наибольшей нагрузки. Если разность показаний потенциалов будет превышать 0,04В, то это является признаком наличия блуждающих токов.

В качестве приборов для измерения можно использовать пару электродов сравнения: медно-сульфатный переносной и соединительный. Помимо этого понадобится цифровой мультиметр для выполнения замеров, а также гибкий изолированный провод, длина которого должна быть не менее 100 метров.

Несмотря на свои небольшие значения, это явление может нанести существенный урон подземным (и не только) коммуникациям. Источники блуждающих токов могут быть самые различные. Поэтому необходимо предпринимать все профилактические мероприятия по устранению этого нежелательного эффекта.

Напоследок рекомендуем просмотреть полезное видео, на котором наглядно показывается, как защититься от данного явления:

Вот мы и рассмотрели причины возникновения блуждающих токов и защита от них. Теперь вы знаете, что это такое и как избавиться от данного явления даже в домашних условиях!

Наверняка вы не знаете:

Источник: https://samelectrik.ru/chto-takoe-bluzhdayushhie-toki-i-kak-ot-nix-izbavitsya.html

Блуждающие токи: причина возникновения и защита от них

20.04.2017 16292

Блуждающие токи: причины возникновения и способы защиты от них

Что такое блуждающий ток?

Металлические изделия, применяемые в электрике, быстро изнашиваются и теряют свои высокие технические характеристики из-за такого явления, как блуждающие токи. 

Что же такое «блуждающий ток»? Данное явление является одним из видов движения зарядов в определенном направлении. Заряженные частицы при этом появляются в земле, которая является в конкретной ситуации проводником.

Блуждающие токи приводят к разрушению металлических изделий, который расположены под землей или же слегка соприкасающиеся с ней. Именно во взаимодействии с почвой и таится опасность.

Для того, чтобы понять природу данного явления, необходимо тщательно разобраться в причинах его возникновения, а также в характеристиках и способах защиты от него.  

Блуждающие токи: причина возникновения 

Ежедневно и даже ежечасно люди в современном мире находятся в окружении различных электрических средств.

Следовательно, объемы потребляемой электроэнергии неумолимо растут, что приводит к необходимости строительства большего количества КТП (комплектных трансформаторных подстанций) и распределительных установок, а также к монтажу все новых линий электропередач, электросетей для поездов, контактных рельсов метрополитенов и т.п. Известно, что земля не является электропроводной, а все вышеперечисленные объекты электроэнергии, так или иначе, взаимосвязаны с ней, и данная связь очень специфична.

Основа появления электрического тока — разность потенциалов в двух точках электрического проводника. Блуждающие токи возникают по аналогичному принципу, отличие состоит в том, что проводником в данной ситуации является почва.

Электрические системы, в которых присутствует изолированная нейтраль, характеризуются тем, что разность потенциалов обеспечивают контуры заземления. При соединении нулевого проводника с данным контуром может возникнуть ситуация падения в напряжении из-за собственного сопротивления, которое появляется во время прохождения заряда.

Данный проводник имеет обозначение PEN, что говорит о совмещенном нулевом защитном и нулевом рабочем проводниках. Основание данного совмещенного проводника и контур заземления КТП соединены между собой. Также PEN-проводник соединяется с заземляющим устройством здания.

Таким образом, два устройства заземления, а именно ЗУ трансформаторной подстанции и ЗУ объекта, являются основой возникновения разности потенциалов, откуда и появляются блуждающие токи.  

В ситуации повреждения линий электропередач происходит практически аналогичная ситуация. То есть, земля является носителем разности потенциалов в случае возникновения замыканий.

Как правило, львиная доля подобных повреждений ликвидируется при помощи автоматики. Важно, что устранение таким способом возможно лишь при масштабных утечках.

Нейтрализация данной проблемы при небольших значения более проблематична.

Небольшие блуждающие токи появляются как раз из-за обилия электротранспорта. Например, троллейбус подключен к электросети при помощи специальных конструкций, которые называются «штанги».

Они соединены с нулевыми и фазными проводниками и, как известно, находятся на самом троллейбусе.

Именно поэтому данное транспортное средство характеризуется невозможностью производства больших блуждающих токов.

Электропитание поездов отличается от приведенного выше примера с троллейбусом. В данном случае, нулевой проводник имеет соединение с рельсами, фазный, в свою очередь, находится над путями. Специальные токосъемники (пантографы) подают электрическую энергию к двигателю данного транспортного средства.

Располагается пантограф на крыше электровоза, электропоезда или трамвая и имеет прямой контакт с кабелем питания. Тяговые подстанции – основа электропитания данного типа электросетей. Расстояние между  подстанциями одинаковое и неизменное. Блуждающие токи появляются из-за искривленности маршрутов. В данном случае заряженные частицы идут по траектории с наименьшим сопротивлением.

То есть, при появлении возможности «срезать угол» заряд пройдет не через рельсы, а по земле.

Блуждающие ток: влияние на металл 

Под землей расположено огромное число различных объектов и изделий из металла: трубопроводы, кабельные линии, железобетон и др.

Известно, что металл – это хороший проводник электрического тока, следовательно, заряд в данной ситуации пройдет не через почву, а по имеющемуся в ней металлу.

Зона, через которую электрический ток входит в грунт, называется «катодной зоной», а через которую выходит – «анодной зоной».

Относительно водопровода стоит поговорить подробнее.

Известно, что процесс коррозии в них неизбежен, а подземные воды отличаются большим содержанием растворимых микроэлементов и служат отличным проводником электричества.

Таким образом, в металлических трубах под землей из-за процесса электролиза происходят коррозийные процессы. Очень хорошо коррозия выражается в анодной зоне, а в катодной разрушения менее выражены.

Подводя итог, стоит отметить, что блуждающие токи оказывают разрушительное влияние на металлические изделия, являясь при этом причиной серьезных экономических потерь.

Блуждающие токи: причины возникновения и способы защиты от них

Как избежать пагубного влияния блуждающего тока?

Блуждающие токи устраняются таким способом, как катодная защита. Для того, что борьба с данным явлением происходила с минимумом препятствий, необходимо нейтрализовать вероятность возникновения анодной зоны на объекте защиты.

Катодная защита производит электроток постоянного характера и при этом подключается к металлическим объектам полюсом с отрицательным значением. Положительный полюс присоединяется к анодам («жертвенные аноды»), забирающим львиную долю разрушительного влияния на себя. Кроме того, объекты защиты покрываются специальными антикоррозийными покрытиями.

Минусы катодной защиты:

  • вероятность «перезащиты», при которой увеличивается сверх нормы потенциал защиты и начинаются коррозийные процессы;
  • неверные расчеты защиты, которые являются причиной ускорения процессов коррозии рядом находящегося металла.

Как измерить блуждающий ток? 

Прежде, чем осуществляется монтаж трубопровода под землей, происходит вычисление блуждающих токов путем измерения разности потенциалов, о которой говорилось выше. Измерение осуществляется через каждые 1000 метров.

Используемые измерительные приборы должны иметь степень точности не меньше 1,5, а минимальное собственное сопротивление равняется 1 МОм. Максимальный показатель разности потенциалов – 10 мВ. Продолжительность одного измерения должна быть не меньше 10 минут, а фиксация должна осуществляться каждые 10 секунд.

Стоит отметить, что измерения в области действия электрического транспорта необходимо осуществлять в период пиковых нагрузок. Разность потенциалов, превышающая 0,04 В, говорит от том, что присутствуют блуждающие токи.

Измерительными приборами могут выступать электроды сравнения, а именно: медно-сульфатный переносного типа и медно-сульфатный соединительного типа. Кроме того, необходим мультиметр цифрового типа и гибкий провод с хорошей изоляцией длиной не меньше 100м.

Блуждающие токи таят в себе опасность даже при самых незначительных показателях и подразумевают под собой разрушительное воздействие подземных и других коммуникаций. Во избежание подобных ситуаций необходимо осуществлять профилактику по выявлению и последующему устранению данного явления.

Источник: https://www.elektro.ru/articles/detail/priroda-bluzhdayushchikh-tokov-i-zashchita-ot-nikh

Блуждающие токи: причины возникновения и методы защиты

Блуждающие токи: причины возникновения и способы защиты от нихБлуждающие токи – разновидность тока, возникающая в земле, которая является и проводником. При попадании блуждающего тока на металлическую оболочку проложенных в земле кабелей происходит постепенное разрушение оболочки. В этом и заключается основная проблема этого явления. В этой статье мы рассмотрим это явление в целом, причины его возникновения, а также способы защиты.

Почему возникают блуждающие токи

Любой современный город имеет сложнейшую сеть различных электрических коммуникаций, многие из которых проложены в земле. Более крупные города имеют также контактные рельсы для трамваев и метро. Так как земля сама по себе способна проводить электрический ток, то зачастую между различными коммуникациями возникают определенные связи.

Напомним, что для появления электрического тока, то есть направленного движения заряженных частиц, необходима разность потенциалов между двумя различными точками проводника.

В данном случае, проводником является земля, а разность потенциалов возникает благодаря наличию контуров заземления в системах с изолированной нейтралью.

То есть, если нейтральный проводник присоединен к заземляющему контуру, то при прохождении через него электрического тока из-за сопротивления этого проводника напряжение снизится. Такой проводник называется PEN.

Один его конец соединен с системой заземления подстанции, а другой – с контуром заземления здания, куда ведет ЛЭП. В итоге обе системы заземления, к которым подключен PEN-проводник, обеспечивают разность потенциалов между его концами. Что в свою очередь вызывает блуждающие токи.

Подобное же явление можно увидеть при нарушении изоляции силового кабеля, проложенного в земле. В этом случае если происходит замыкание с землей, то земля получает определенный электрический потенциал.

Если это серьезная авария, то неисправность будет быстро устранена автоматическими устройствами защиты.

Но при малых значения утечки тока найти подобную проблему достаточно сложно, поэтому она может существовать достаточно долго.

Одной из основных причин появления блуждающих токов являются сети трамваев и метро. Троллейбусы, в свою очередь, подключаются к электросети с помощью «вилки», которая расположена на самом троллейбусе. Поэтому этот вид транспорта блуждающие токи не генерирует.

А вот электропитание для электричек подается немного по-другому. Нейтральный проводник присоединяется к рельсам, а фазный – прокладывается над ж/д дорогой. Электропоезд соединяется с ним с помощью пантографов.

Питание для электропоездов генерируют тяговые подстанции, расположенные вдоль всей трассы. При наличии поворотов ток как бы «срезает угол», то есть идет не по рельсам, а напрямую, через землю.

Воздействие блуждающих токов

Как уже говорилось выше, в земле расположено множество металлических конструкций, устройств и объектов: инженерные коммуникации, кабельные линии, ж/б строения.

Так как металлы гораздо лучше проводят ток, чем земля, то блуждающие токи тут же перейдут на эти металлические конструкции. Зона входа токов на конструкцию называется катодной. Зона выхода – анодной.

Обычно наибольшие разрушения происходят в анодной зоне.

Помимо грунта и металлических конструкций в земле есть и подземные воды, которые также являются отличным проводником тока.

Защита от блуждающих токов

Наиболее популярным средством защиты от блуждающих токов является установка катодной защиты (на фото ниже). Для этого необходимо предотвратить возникновение анодной зоны, оставив лишь катодную. Установка катодной защиты подает постоянный ток, будучи подключена своим «минусом» к металлоконструкции, а «плюсом» — к анодам, которые и получают на себя основной удар тока.

Для дополнительной защиты поверхность конструкции покрывается специальным составом, который защищает ее от коррозии.

Блуждающие токи: причины возникновения и способы защиты от них

Минусами установки катодной защиты являются:

  • «перезащита», когда потенциал установки оказывается слишком высок, и в итоге защищаемая конструкция все равно подвергается воздействию токов;
  • неправильный расчет или монтаж станции, вследствие чего также усиливаются процессы коррозии.

Стоит также сказать, что эта проблема актуальна не только для промышленных и коммерческих конструкций и трубопроводов, но и для обычных жилых домов.

Например, в системе отопления постоянно циркулирует горячая вода, которая, как мы уже говорили, является отличным проводником тока. И если трубы, и примыкающие к ним элементы не заземлены, то с течением времени на их наружной поверхности может появиться ржавчина.

Правильное заземление решает все подобные проблемы, поэтому в настоящее время этот метод защиты является одним из наиболее популярных.

Локализация и измерение блуждающих токов

При прокладке металлических труб блуждающие токи в земле определяются через вычисление разности потенциалов между двумя точками поверхности земли, расстояние между которыми составляет 100 метров.

Измерительные устройства должны иметь класс точности не менее 1,5 и собственное электрическое сопротивление – от 1 МОм. По действующим в настоящее время нормативам, разность потенциалов не должна превышать 10 мВ. Продолжительность измерения – не менее 10 минут, с фиксацией данных через каждые 10 секунд.

Измерение наличия блуждающих токов в зоне работы электрического транспорта необходимо производить во время наибольшей нагрузки транспортной сети. Если разность потенциалов будет больше 40 мВ – это значит, что в земле есть блуждающие токи.

В качестве измерительного прибора, как правило, используются два электрода: медно-сульфатный и соединительный. Также необходим точный мультиметр и гибкий изолированный провод (например, ПВС) длиной более 100 м.

В заключение скажем, что несмотря на казалось бы низкие значения, блуждающие токи со временем могут нанести существенные повреждения кабельной линии. Поэтому заранее следует предусмотреть меры по их выявлению и нейтрализации.

Источник: http://www.yugtelekabel.ru/bluzhdayushhie-toki-prichiny-vozniknoveniya-i-metody-zashhity.html

Ссылка на основную публикацию