Какая связь существует между напряжением, током и сопротивлением?
Электрическая цепь считается сформированной тогда, когда создан такой проводящий путь, который позволяет свободным электронам непрерывно перемещаться. Это непрерывное движение свободных электронов по проводникам цепи называется током. Иногда его, по аналогии с потоком воды через трубу, называют «потоком».
Сила побуждающая электроны «течь» по цепи называется напряжением. Напряжение — это определённая мера потенциальной энергии, которая всегда взаимосвязана с двумя точками цепи.
Когда мы говорим что в схеме присутствует определенная величина напряжения, мы имеем в виду величину потенциальной энергии, необходимой для перемещения электронов из одной точки цепи в другую.
Без привязки к двум конкретным точкам цепи термин «напряжение» не имеет смысла.
При движении свободных электронов через проводники, определенное воздействие на них оказывает сила трения, которая препятствует движению. Это противодействие движению называется сопротивлением.
Величина тока в цепи зависит от величины напряжения, заставляющего электроны двигаться, а так же от величины сопротивления, тормозящего поток электронов.
Так же как и напряжение, сопротивление взаимосвязано с двумя точками цепи.
Чтобы конкретизировать понятия величины тока, напряжения и сопротивления, мы должны присвоить им единицы измерения, точно также, как единицы измерения присвоены массе, температуре, объему, длине и другим видам физических величин. Например, для массы мы используем единицу измерения «килограмм» или «грамм», для температуры — градус Фаренгейта или градус Цельсия. Стандартные единицы измерения силы тока, напряжения и сопротивления приведены в таблице:
«Обозначение» каждой величины — это буква латинского алфавита, которая используется для представления величины в алгебраическом уравнении.
Использование латинских букв в физических и технических дисциплинах признано на международном уровне. «Аббревиатура» представляет собой первую букву единицы измерения на русском и английском языках.
Исключение составляет аббревиатура слова Ом, которую в английской версии представляет буква греческого алфавита.
Каждая единица измерения названа в честь известного экспериментатора в области электроники: Ампер — в честь француза Ампера Андре Мари, Вольт — в честь итальянца Алессандро Вольта, Ом — в честь немца Ома Георга Симона.
Обозначение каждой величины имеет определенный смысл. Буква «R» (resistance) для сопротивления говорит сама за себя. Напряжение в нашей стране обозначается буквой «U», а за границей оно обозначается буквой «V» (voltage), что тоже говори само за себя.
Что касается буквы «I» для обозначения силы тока, и буквы «E» — для второго обозначения напряжения, то они немного не вписываются в это правило. «I», как многие полагают, означает «Intensity» (Интенсивность (потока электронов)), а «E» — «Electromotive force» (Электродвижущую силу).
Обозначения «E» и «U» по большей части являются взаимозаменяемыми, однако, некоторые радиолюбители резервируют букву «E» для обозначения напряжения источника питания (батареи, генератора и др.), а буквой «U» обозначают напряжение чего-нибудь еще.
Все эти обозначения используют заглавные буквы, кроме случаев, когда величина (особенно напряжения или тока) описывается в пределах короткого промежутка времени (так называемое «мгновенное» значение).
Например, стабильное на протяжении длительного периода времени напряжение батареи обозначается заглавной буквой «E», а пиковое напряжение в момент удара молнии в линию электропередач скорее всего будет обозначено строчной буквой «e» (или «u»).
Это же правило применяется и к силе тока, где строчная буква «i» обозначает силу тока в определенный момент времени. Большинство измерений постоянного тока (DC) обозначается заглавными буквами, потому что он стабилен с течением времени.
Одной из основополагающих, но редко используемых единиц измерения в электронике является кулон. Кулон это мера электрического заряда, он пропорционален количеству свободных электронов. Один кулон равен 6,250,000,000,000,000,000 электронов.
Величина электрического заряда обозначается буквой «Q», а аббревиатура кулона — буква «C» (coulomb). 1 Амер (единица измерения потока электронов) равен 1 Кулону электронов, проходящих через определенную точку цепи за 1 секунду времени.
Иными словами, электрический ток — это скорость движения электрического заряда через проводник.
Как было сказано выше, напряжение — это количество потенциальной энергии на единицу электрического заряда, необходимой для перемещения электронов из одной точки цепи в другую.
Поэтому, прежде чем мы сможем точно определить что из себя представляет «Вольт», мы должны понять, как измерить величину называемую «потенциальной энергией». Общей единицей измерения для любой энергии является джоуль.
Джоуль равен работе, совершаемой при перемещении точки приложения силы, равной одному ньютону, на расстояние одного метра в направлении действия силы.
Исходя из вышеприведенного определения напряжения, 1 Вольт равен 1 Джоулю электрической потенциальной энергии на (деленному на) 1 Кулон заряда. Таким образом, 9-вольтовая батарея затрачивает 9 джоулей энергии на перемещение каждого кулона электронов через цепь.
Рассмотренные обозначения и единицы измерения электрических величин очень важно знать, так как мы, с настоящего момента, начинаем исследовать соотношения между ними в электрических цепях.
Первым, и возможно самым важным соотношением между током, напряжением и сопротивлением является закон Ома, открытый и опубликованный Георгом Симоном Омом в 1827 году. Основным открытием Ома было то, что сила тока в проводнике прямопропорциональна напряжению, приложенному к его концам.
Ом выразил своё открытие в виде простого уравнения, описывающего взаимосвязь тока, напряжения и сопротивления:
- В этом алгебраическом выражении сила тока (I) прямопропорциональна напряжению (U) и обратно пропорциональна сопротивлению (R). Используя формулу закона Ома и методы алгебры, можно вычислить напряжение и сопротивление:
- Давайте посмотрим, как эти уравнения работают при анализе простых электрических схем:
В приведенной выше схеме есть только один источник напряжения (батарея слева) и одно сопротивление току (лампа справа). Это делает ее очень простой в применении закона Ома. Если нам известны значения любых двух из трех величин (силы тока, напряжения и сопротивления) в этой схеме, то используя закон Ома, мы можем вычислить третью.
В первом примере мы вычислим силу тока (I) при заданных значениях напряжения (U) и сопротивления (R):
Чему равна сила тока (I) в этой схеме?
Во втором примере мы вычислим сопротивление (R) при заданных значениях напряжения (U) и силы тока (I):
Чему равно сопротивление (R) лампы?
В последнем примере мы вычислим величину поставляемого батареей напряжения (U) при заданных значениях силы тока (I) и сопротивления (R):
Чему равно поставляемое батареей напряжение (U)?
Закон Ома очень простой и полезный инструмент для анализа электрических цепей. Он так часто используется при обучении электронике, что намертво врезается в память серьезных студентов. Для тех-же, кто не дружит с алгеброй, существует небольшая уловка для запоминания этого закона. Единственное что нужно сделать, это заключить буквы U, I и R в треугольник следующим образом:
- Если вам известны значения U и I, и нужно вычислить R, то просто зачеркните эту букву в треугольнике, и вы увидите что нужно сделать:
- Аналогичным образом можно вычислить значения I и U:
- Краткий обзор:
- Напряжение измеряется в вольтах, и обозначается буквами «E» или «U».
- Сила тока измеряется в амперах, и обозначается буквой «I».
- Сопротивление измеряется в омах, и обозначается буквой «R».
- Закон Ома: I = E/R ; U = IR ; R = E/I.
Источник: http://www.radiomexanik.spb.ru/2.-zakon-oma/1.-kakaya-svyaz-suschestvuet-mezhdu-napryazheniem-tokom-i-soprotivleniem.html
Закон Ома для полной цепи
Если закон Ома для участка цепи знают почти все, то закон Ома для полной цепи вызывает затруднения у школьников и студентов. Оказывается, все до боли просто!
Идеальный источник ЭДС
Имеем источник ЭДС
Давайте вспомним, что такое ЭДС. ЭДС – это что-то такое, что создает электрический ток. Если к такому источнику напряжения подцепить любую нагрузку (хоть миллиард галогенных ламп, включенных параллельно), то он все равно будет выдавать такое же напряжение, какое-бы он выдавал, если бы мы вообще не цепляли никакую нагрузку.
- Или проще:
Короче говоря, какая бы сила тока не проходила через цепь резистора, напряжение на концах источника ЭДС будет всегда одно и тоже. Такой источник ЭДС называют идеальным источником ЭДС.
Но как вы знаете, в нашем мире нет ничего идеального. То есть если бы в нашем аккумуляторе был идеальный источник ЭДС, тогда бы напряжение на клеммах аккумулятора никогда бы не проседало. Но оно проседает и тем больше, чем больше силы тока потребляет нагрузка. Что-то здесь не так. Но почему так происходит?
Внутреннее сопротивление источника ЭДС
Дело все в том, что в аккумуляторе “спрятано” сопротивление, которое условно говоря, цепляется последовательно с источником ЭДС аккумулятора. Называется оно внутренним сопротивлением или выходным сопротивлением. Обозначается маленькой буковкой “r “.
- Выглядит все это в аккумуляторе примерно вот так:
- Цепляем лампочку
- Итак, что у нас получается в чистом виде?
- Лампочка – это нагрузка, которая обладает сопротивлением. Значит, еще больше упрощаем схему и получаем:
Имеем идеальный источник ЭДС, внутреннее сопротивление r и сопротивление нагрузки R. Вспоминаем статью делитель напряжения. Там говорится, что напряжение источника ЭДС равняется сумме падений напряжения на каждом сопротивлении.
На резисторе R падает напряжение UR , а на внутреннем резисторе r падает напряжение Ur .
Теперь вспоминаем статью делитель тока. Сила тока, протекающая через последовательно соединенные сопротивления везде одинакова.
- Вспоминаем алгебру за 5-ый класс и записываем все то, о чем мы с вами сейчас говорили. Из закона Ома для участка цепи получаем, что
- Далее
- Итак, последнее выражение носит название “закон Ома для полной цепи”
- где
- Е – ЭДС источника питания, В
- R – сопротивление всех внешних элементов в цепи, Ом
- I – сила ток в цепи, А
- r – внутреннее сопротивление источника питания, Ом
Просадка напряжения
- Итак, знакомьтесь, автомобильный аккумулятор!
- Для дальнейшего его использования, припаяем к нему два провода: красный на плюс, черный на минус
- Наш подопечный готов к бою.
Теперь берем автомобильную лампочку-галогенку и тоже припаяем к ней два проводка с крокодилами. Я припаялся к клеммам на “ближний” свет.
- Первым делом давайте замеряем напряжение на клеммах аккумулятора
12,09 вольт. Вполне нормально, так как наш аккумулятор выдает именно 12 вольт. Забегу чуток вперед и скажу, что сейчас мы замерили именно ЭДС.
Подключаем галогенную лампу к аккумулятору и снова замеряем напряжение:
Видели да? Напряжение на клеммах аккумулятора просело до 11,79 Вольт!
А давайте замеряем, сколько потребляет тока наша лампа в Амперах. Для этого составляем вот такую схемку:
Желтый мультиметр у нас будет замерять напряжение, а красный мультиметр – силу тока. Как замерять с помощью мультиметра силу тока и напряжение, можно прочитать в этой статье.
Смотрим на показания приборов:
Как мы видим, наша лампа потребляет 4,35 Ампер. Напряжение просело до 11,79 Вольт.
- Давайте вместо галогенной лампы поставим простую лампочку накаливания на 12 Вольт от мотоцикла
- Смотрим показания:
Лампочка потребляет силу тока в 0,69 Ампер. Напряжение просело до 12 Вольт ровно.
Какие выводы можно сделать? Чем больше нагрузка потребляет силу тока, тем больше просаживается напряжение на аккумуляторе.
Как найти внутреннее сопротивление источника ЭДС
Давайте снова вернемся к этой фотографии
Так как у нас в этом случае цепь разомкнута (нет внешней нагрузки), следовательно сила тока в цепи I равняется нулю. Значит, и падение напряжение на внутреннем резисторе Ur тоже будет равняться нулю. В итоге, у нас остается только источник ЭДС, у которого мы и замеряем напряжение. В нашем случае ЭДС=12,09 Вольт.
Как только мы подсоединили нагрузку, то у нас сразу же упало напряжение на внутреннем сопротивлении и на нагрузке, в данном случае на лампочке:
Сейчас на нагрузке (на галогенке) у нас упало напряжение UR=11,79 Вольт, следовательно, на внутреннем сопротивлении падение напряжения составило Ur=E-UR=12,09-11,79=0,3 Вольта. Сила тока в цепи равняется I=4,35 Ампер. Как я уже сказал, ЭДС у нас равняется E=12,09 Вольт. Следовательно, из закона Ома для полной цепи высчитываем, чему у нас будет равняться внутреннее сопротивление r
Резюме
Внутреннее сопротивление бывает не только у различных химических источников напряжения. Внутренним сопротивлением также обладают и различные измерительные приборы. Это в основном вольтметры и осциллографы.
Дело все в том, что если подключить нагрузку R, сопротивление у которой будет меньше или даже равно r, то у нас очень сильно просядет напряжение.
Это можно увидеть, если замкнуть клеммы аккумулятора толстым медным проводом и замерять в это время напряжение на клеммах.
Но я не рекомендую этого делать ни в коем случае! Поэтому, чем высокоомнее нагрузка (ну то есть чем выше сопротивление нагрузки R ), тем меньшее влияние оказывает эта нагрузка на источник электрической энергии.
Вольтметр и осциллограф при замере напряжения тоже чуть-чуть просаживают напряжение замеряемого источника напряжения, потому как являются нагрузкой с большим сопротивлением. Именно поэтому самый точный вольтметр и осциллограф имеют ну очень большое сопротивление между своими щупами.
Источник: https://www.RusElectronic.com/eds-istochnika-napryazheniya-i-ego-vnutrennee-soprotivlenie/
Резисторы, ток и напряжение
В этой статье мы рассмотрим резистор и его взаимодействие с напряжением и током, проходящим через него. Вы узнаете, как рассчитать резистор с помощью специальных формул. В статье также показано, как специальные резисторы могут быть использованы в качестве датчика света и температуры.
Представление об электричестве
Новичок должен быть в состоянии представить себе электрический ток. Даже если вы поняли, что электричество состоит из электронов, движущихся по проводнику, это все еще очень трудно четко представить себе. Вот почему я предлагаю эту простую аналогию с водной системой, которую любой желающий может легко представить себе и понять, не вникая в законы.
Обратите внимание, как электрический ток похож на поток воды из полного резервуара (высокого напряжения) в пустой(низкое напряжение). В этой простой аналогии воды с электрическим током, клапан аналогичен токоограничительному резистору.
Из этой аналогии можно вывести некоторые правила, которые вы должны запомнить навсегда:
— Сколько тока втекает в узел, столько из него и вытекает
— Для того чтобы протекал ток, на концах проводника должны быть разные потенциалы.
— Количество воды в двух сосудах можно сравнить с зарядом батареи.
Когда уровень воды в разных сосудах станет одинаковым, она перестанет течь, и при разряде аккумулятора, разницы между электродами не будет и ток перестанет течь.
- — Электрический ток будет увеличиваться при уменьшении сопротивления, как и скорость потока воды будет увеличиваться с уменьшением сопротивления клапана.
- Я мог бы написать гораздо больше умозаключений на основе этой простой аналогии, но они описаны в законе Ома ниже.
- Резистор
Резисторы могут быть использованы для контроля и ограничения тока, следовательно, основным параметром резистора является его сопротивление, которое измеряется в Омах. Не следует забывать о мощности резистора, которая измеряется в ваттах (Вт), и показывает, какое количество энергии резистор может рассеять без перегрева и выгорания.
Важно также отметить, что резисторы используются не только для ограничения тока, они также могут быть использованы в качестве делителя напряжения для получения низкого напряжения из большего.
Некоторые датчики основаны на том, что сопротивление варьируется в зависимости от освещённости, температуры или механического воздействия, об этом подробно написано в конце статьи.
Закон Ома
Понятно, что эти 3 формулы выведены из основной формулы закона Ома, но их надо выучить для понимания более сложных формул и схем. Вы должны быть в состоянии понять и представить себе смысл любой из этих формул.
Например, во второй формуле показано, что увеличение напряжения без изменения сопротивления приведет к росту тока.
Тем не менее, увеличение тока не увеличит напряжение (хотя это математически верно), потому что напряжение — это разность потенциалов, которая будет создавать электрический ток, а не наоборот (см. аналогию с 2 емкостями для воды).
Формула 3 может использоваться для вычисления сопротивления токоограничивающего резистора при известном напряжении и токе. Это лишь примеры, показывающие важность этого правила. Вы сами узнаете, как использовать их после прочтения статьи.
Последовательное и параллельное соединение резисторов
Понимание последствий параллельного или последовательного подключения резисторов очень важно и поможет вам понять и упростить схемы с помощью этих простых формул для последовательного и параллельного сопротивления:
- Кроме того, что эту формулу можно использовать для упрощения схем, она может быть использована для создания номиналов резисторов, которых у вас нет.
Отметим также, что значение R3 будет всегда меньше, чем у 2 других эквивалентных резисторов, так как добавление параллельных резисторов обеспечивает дополнительные пути - электрическому току, снижая общее сопротивление цепи.
- Последовательно соединённые резисторы могут быть заменены одним резистором, значение которого будет равно сумме этих двух, в связи с тем, что это соединение обеспечивает дополнительное сопротивление тока. Таким образом, эквивалентное сопротивление R3 очень просто вычисляется: R3=R1+R2
- В интернете есть удобные он-лайн калькуляторы для расчета последовательного и параллельного соединения резисторов.
- Токоограничивающий резистор
Самая основная роль токоограничивающих резисторов — это контроль тока, который будет протекать через устройство или проводник. Для понимания их работы, давайте сначала разберём простую схему, где лампа непосредственно подключена к 9В батареи.
Лампа, как и любое другое устройство, которое потребляет электроэнергию для выполнения определенной задачи (например, светоизлучение) имеет внутреннее сопротивление, которое определяет его текущее потребление.
Таким образом, отныне, любое устройство может быть заменено на эквивалентное сопротивление.
Теперь, когда лампа будет рассматриваться как резистор, мы можем использовать закон Ома для расчета тока, проходящего через него. Закон Ома гласит, что ток, проходящий через резистор равен разности напряжений на нем, поделенное на сопротивление резистора: I=V/R или точнее так:
I=(V1-V2)/R
где (V1-V2) является разностью напряжений до и после резистора.
Теперь обратите внимание на рисунок выше, где добавлен токоограничительный резистор. Он будет ограничивать ток идущий к лампе, как это следует из названия. Вы можете контролировать, количество тока протекающего через лампу, просто выбрав правильное значение R1. Большой резистор будет сильно снижать ток, а небольшой резистор менее сильно (так же, как в нашей аналогии с водой).
Математически это запишется так:
Из формулы следует, что ток уменьшится, если значение R1 увеличится. Таким образом, дополнительное сопротивление может быть использовано для ограничения тока. Однако важно отметить, что это приводит к нагреву резистора, и вы должны правильно рассчитать его мощность, о чем будет написано дальше.
- Вы можете воспользоваться он-лайн калькулятором для расчета токоограничительного резистора светодиода.
- Резисторы как делитель напряжения
- Как следует из названия, резисторы могут быть использованы в качестве делителя напряжения, другими словами, они могут быть использованы для уменьшения напряжения путем деления его. Формула:
- Если оба резистора имеют одинаковое значение (R1=R2=R), то формулу можно записать так:
- Другой распространенный тип делителя, когда один резистор подключен к земле (0В), как показано на рисунке 6B.
Заменив Vb на 0 в формуле 6А, получаем: - Узловой анализ
Теперь, когда вы начинаете работать с электронными схемами, важно уметь их анализировать и рассчитывать все необходимые напряжения, токи и сопротивления. Есть много способов для изучения электронных схем, и одним из наиболее распространенных методов является узловой, где вы просто применяете набор правил, и рассчитываете шаг за шагом все необходимые переменные.
- Упрощенные правила узлового анализа
- Определение узла
Узел – это любая точка соединения в цепи. Точки, которые связаны друг с другом, без других компонентов между ними рассматриваются как единый узел. Таким образом, бесконечное число проводников в одну точку считаются одним узлом. Все точки, которые сгруппированы в один узел, имеют одинаковые напряжения.
- Определение ветви
- Ветвь представляет собой набор из 1 и более компонентов, соединенных последовательно, и все компоненты, которые подсоединены последовательно к этой цепи, рассматриваются как одна ветвь.
- Все напряжения обычно измеряются относительно земли напряжение на которой всегда равно 0 вольт.
- Ток всегда течет от узла с более высоким напряжением на узел с более низким.
- Напряжение на узле может быть высчитано из напряжения около узла, с помощью формулы:
V1-V2=I1*(R1)
Перенесем: - V2=V1-(I1*R1)
Где V2 является искомым напряжением, V1 является опорным напряжением, которое известно, I1 ток, протекающий от узла 1 к узлу 2 и R1 представляет собой сопротивление между 2 узлами.
- Точно так же, как и в законе Ома, ток ответвления можно определить, если напряжение 2х соседних узлах и сопротивление известно:
I 1=(V1-V2)/R1 - Текущий входящий ток узла равен текущему выходящему току, таким образом, это можно записать так: I 1+ I3=I2
Важно, чтобы вы были в состоянии понимать смысл этих простых формул. Например, на рисунке выше, ток протекает от V1 до V2, и, следовательно, напряжение V2 должно быть меньше, чем V1.
Используя соответствующие правила в нужный момент, вы сможете быстро и легко проанализировать схему и понять её. Это умение достигается практикой и опытом.
Расчет необходимой мощности резистора
При покупке резистора вам могут задать вопрос: «Резисторы какой мощности вы хотите?» или могут просто дать 0.25Вт резисторы, поскольку они являются наиболее популярными.
Пока вы работаете с сопротивлением больше 220 Ом, и ваш блок питания обеспечивает 9В или меньше, можно работать с 0.125Вт или 0.
25Вт резисторами. Но если напряжение более 10В или значение сопротивления менее 220 Ом, вы должны рассчитать мощность резистора, или он может сгореть и испортить прибор.
Чтобы вычислить необходимую мощность резистора, вы должны знать напряжение через резистор (V) и ток, протекающий через него (I):
P=I*V
- где ток измеряется в амперах (А), напряжение в вольтах (В) и Р — рассеиваемая мощность в ваттах (Вт)
- На фото предоставлены резисторы различной мощности, в основном они отличаются размером.
- Разновидности резисторов
Резисторы могут быть разными, начиная от простых переменных резисторов (потенциометров) до реагирующих на температуру, свет и давление. Некоторые из них будут обсуждаться в этом разделе.
Переменный резистор (потенциометр)
На рисунке выше показано схематическое изображение переменного резистора. Он часто упоминается как потенциометр, потому что он может быть использован в качестве делителя напряжения.
Они различаются по размеру и форме, но все работают одинаково.
Выводы справа и слева эквивалентны фиксированной точке (например, Va и Vb на рисунке выше слева), а средний вывод является подвижной частью потенциометра, а также используется для изменения соотношения сопротивления на левом и правом выводах.
Следовательно, потенциометр относится к делителям напряжения, которым можно выставить любое напряжение от Va к Vb.
Кроме того, переменный резистор может быть использован как тока ограничивающий путем соединения выводов Vout и Vb, как на рисунке выше (справа).
Представьте себе, как ток будет течь через сопротивление от левого вывода к правому, пока не достигнет подвижной части, и пойдет по ней, при этом, на вторую часть пойдет очень мало тока. Таким образом, вы можете использовать потенциометр для регулировки тока любых электронных компонентов, например лампы.
LDR (светочувствительные резисторы) и термисторы
Есть много датчиков основанных на резисторах, которые реагируют на свет, температуру или давление. Большинство из них включаются как часть делителя напряжения, которое изменяется в зависимости от сопротивления резисторов, изменяющегося под воздействием внешних факторов.
Терморезисторы
Фоторезистор (LDR)
Как вы можете видеть на рисунке 11A, фоторезисторы различаются по размеру, но все они являются резисторами, сопротивление которых уменьшается под воздействием света и увеличивается в темноте.
К сожалению, фоторезисторы достаточно медленно реагируют на изменение уровня освещённости, имеют достаточно низкую точность, но очень просты в использовании и популярны.
Как правило, сопротивление фоторезисторов может варьироваться от 50 Ом при солнце, до более чем 10МОм в абсолютной темноте.
Как мы уже говорили, изменение сопротивления изменяет напряжение с делителя. Выходное напряжение можно рассчитать по формуле:
Если предположить, что сопротивление LDR изменяется от 10 МОм до 50 Ом, то Vout будет соответственно от 0.005В до 4.975В.
Термистор похож на фоторезистор, тем не менее, термисторы имею гораздо больше типов, чем фоторезисторы, например, термистор может быть либо с отрицательным температурным коэффициентом (NTC), сопротивление которого уменьшается с повышением температуры, или положительным температурным коэффициентом (PTC), сопротивление которого будет увеличиваться с повышением температуры. Сейчас термисторы реагируют на изменение параметров среды очень быстро и точно.
- Схемотехническое обозначение резисторов
- Про определение номинала резистора используя цветовую маркировку можно почитать здесь.
- Оригинал статьи
Источник: https://cxem.net/beginner/beginner87.php
Мощность ток напряжение. Расчёт нагрузки и выбор питающих кабелей
Электроэнергия давно используется человеком для удовлетворения своих потребностей, но она невидима, не воспринимается органами чувств, потому сложна для понимания. Мощность ток напряжение, все эти характеристики электроэнергии исследованы известными учеными, которые дали им определения и описали математическими методами взаимные связи между ними.
Мощность ток напряжение сопротивление
Так же следует помнить, на величину электрического сопротивления влияет несколько факторов:
- строение вещества, определяющее наличие свободных электронов в проводнике и влияющее на удельное сопротивление
- площадь поперечного сечения и длина токовода
- температура
В приведенной таблице показаны общие соотношения для цепей постоянного и переменного тока, которые можно применять для анализа работы схем электроснабжения.
Расчёт сечения питающего кабеля и проводки
Для обеспечения безопасности при эксплуатации бытовых электроприборов необходимо верно вычислить сечение питающего кабеля и проводки. Поскольку ошибочно выбранное сечение жил кабеля способно привести к перегреву провода, плавление его изоляции и в итоге, возгоранию, из-за короткого замыкания.
Мощность ток напряжение, удобная шпаргалка
Основным параметром, по которому производят расчет сечения провода, является его продолжительная допустимая токовая нагрузка. Т.
е, это такая номинальная величина тока, которую проводник способен через себя пропускать на протяжении длительного времени.
Для определения величины номинального тока, необходимо знать приблизительную мощность всех подключаемых электроприборов и оборудования в квартире.
И так, что мы имеем:
- От значения величины тока зависит выбор питающего кабеля (провода), по которому могут быть подключены приборы энергопотребления к сети
- Зная напряжение электрической сети и полную нагрузку электроприборов, можно по формуле вычислить силу тока, который потребуется пропускать по проводнику(проводу, кабелю). По его величине выбирают площадь сечения жил.
Расчет тока, выполняем самостоятельно
Если известны электро-потребители в квартире или доме, необходимо выполнить несложные расчёты, чтобы правильно смонтировать схему электроснабжения.
Аналогичные расчёты выполняются для производственных целей: определения необходимой площади сечения жил кабеля при осуществлении подключения промышленного оборудования (различных промышленных электрических двигателей и механизмов).
Мощность ток напряжение, расчёты для однофазной сети 220 В
Сила тока I (в амперах, А) подсчитывается по формуле:
- I = P / U,
- где
- P – электрическая полная нагрузка (обязательно указывается в техническом паспорте устройства), Вт (ватт)
- U – напряжение электрической сети, В (вольт)
Ниже в таблице представлены величины нагрузки типичных бытовых электроприборов и потребляемый ими ток (для напряжения 220 В).
Электроприбор | Потребляемая мощность, Вт | Сила тока, А |
Стиральная машина | 2000 – 2500 | 9,0 – 11,4 |
Джакузи | 2000 – 2500 | 9,0 – 11,4 |
Электроподогрев пола | 800 – 1400 | 3,6 – 6,4 |
Стационарная электрическая плита | 4500 – 8500 | 20,5 – 38,6 |
СВЧ печь | 900 – 1300 | 4,1 – 5,9 |
Посудомоечная машина | 2000 — 2500 | 9,0 – 11,4 |
Морозильники, холодильники | 140 — 300 | 0,6 – 1,4 |
Мясорубка с электроприводом | 1100 — 1200 | 5,0 — 5,5 |
Электрочайник | 1850 – 2000 | 8,4 – 9,0 |
Электрическая кофеварка | 6з0 — 1200 | 3,0 – 5,5 |
Соковыжималка | 240 — 360 | 1,1 – 1,6 |
Тостер | 640 — 1100 | 2,9 — 5,0 |
Миксер | 250 — 400 | 1,1 – 1,8 |
Фен | 400 — 1600 | 1,8 – 7,3 |
Утюг | 900 — 1700 | 4,1 – 7,7 |
Пылесос | 680 — 1400 | 3,1 – 6,4 |
Вентилятор | 250 — 400 | 1,0 – 1,8 |
Телевизор | 125 — 180 | 0,6 – 0,8 |
Радиоаппаратура | 70 — 100 | 0,3 – 0,5 |
Приборы освещения | 20 — 100 | 0,1 – 0,4 |
Различные потребители электроэнергии подключаются через соответствующие автоматы к электросчётчику и далее общему автомату, который должен быть рассчитан на нагрузку приборов, которыми будет оборудована квартира. Провод, который подводит питание также должен удовлетворять нагрузке энергопотребителей.
Как рассчитать ток защитного автомата
Для группы розеток, предназначенных для питания бытовых электроприборов на кухне, необходимо подобрать защитный автоматический выключатель. Мощности приборов по паспортным данным составляют 2,0, 1,5 и 0,6 кВт.
Решение. В квартире используется однофазная переменная сеть 220 вольт. Общая мощность всех приборов, подключенных в работу одновременно, составит 2,0+1,5+0,6=4,1 кВт=4100 Вт.
По формуле I = P / U определим общий ток группы потребителей: 4100/220=18,64 А.
Ближайший по номиналу автоматический выключатель имеет величину срабатывания 20 ампер. Его и выбираем. Автомат меньшего значения на 16 А будет постоянно отключаться от перегрузки.
Ниже приводится таблица для скрытой проводки при однофазной схеме подключения квартиры для подбора провода при напряжении 220 В
Сечение жилы провода, мм2 | Диаметр жилы проводника, мм | Медные жилы | Алюминиевые жилы | ||
Ток, А | Мощность, Вт | Ток, А | Мощность, кВт | ||
0,50 | 0,80 | 6 | 1300 | ||
0,75 | 0,98 | 10 | 2200 | ||
1,00 | 1,13 | 14 | 3100 | ||
1,50 | 1,38 | 15 | 3300 | 10 | 2200 |
2,00 | 1,60 | 19 | 4200 | 14 | 3100 |
2,50 | 1,78 | 21 | 4600 | 16 | 3500 |
4,00 | 2,26 | 27 | 5900 | 21 | 4600 |
6,00 | 2,76 | 34 | 7500 | 26 | 5700 |
10,00 | 3,57 | 50 | 11000 | 38 | 8400 |
16,00 | 4,51 | 80 | 17600 | 55 | 12100 |
25,00 | 5,64 | 100 | 22000 | 65 | 14300 |
Как видно из таблицы сечение жил зависит кроме нагрузки и от материала, из которого изготовлен провод.
Мощность ток напряжение, расчёты для трёхфазной сети 380 В
При трёхфазном электроснабжении сила тока I (в амперах, А) вычисляется по формуле:
- I = P /1,73 U,
- где P -потребляемая мощность, Вт;
- U — напряжение в сети, В,
- так как напряжение при трёхфазной схеме электроснабжения 380 В, формула примет вид:
- I = P /657, 4.
Сечение жил в питающем кабеле при различной нагрузке при трёхфазной схеме напряжением 380 В для скрытой проводки представлена в таблице.
Сечение жилы провода, мм2 | Диаметр жилы проводника, мм | Медные жилы | Алюминиевые жилы | ||
Ток, А | Мощность, Вт | Ток, А | Мощность, кВт | ||
0,50 | 0,80 | 6 | 2250 | ||
0,75 | 0,98 | 10 | 3800 | ||
1,00 | 1,13 | 14 | 5300 | ||
1,50 | 1,38 | 15 | 5700 | 10 | 3800 |
2,00 | 1,60 | 19 | 7200 | 14 | 5300 |
2,50 | 1,78 | 21 | 7900 | 16 | 6000 |
4,00 | 2,26 | 27 | 10000 | 21 | 7900 |
6,00 | 2,76 | 34 | 12000 | 26 | 9800 |
10,00 | 3,57 | 50 | 19000 | 38 | 14000 |
16,00 | 4,51 | 80 | 30000 | 55 | 20000 |
25,00 | 5,64 | 100 | 38000 | 65 | 24000 |
Для расчёта тока в цепях питания нагрузки, характеризующейся большой реактивной полной мощностью, что характерно применению электроснабжения в промышленности:
- электрические двигатели
- дроссели приборов освещения
- сварочные трансформаторы
- индукционные печи
В мощных приборах и оборудовании, доля реактивной нагрузки выше и поэтому для таких приборов в расчетах коэффициент мощности принимают равным 0,8.
На практике принято считать, что при подсчёте электрических нагрузок для бытовых целей запас мощности принимают 5%. В случае расчёта электрических сетей для промышленного производства запас мощности принимают 20%.
Будем рады, если подпишетесь на наш Блог!
[wysija_form id=»1″]
- ТЕГИ
- Монтаж кабеля
- Предварительный монтаж
- Схемы
Источник: https://powercoup.by/stati-po-elektromontazhu/moshhnost-tok-napryazhenie
Как найти силу тока в цепи
Одной из основных характеристик электрической цепи является сила тока. Она измеряется в амперах и определяет нагрузку на токопроводящие провода, шины или дорожки плат. Эта величина отражает количество электричества, которое протекло в проводнике за единицу времени.
Определить её можно несколькими способами в зависимости от известных вам данных. Соответственно студенты и начинающие электрики из-за этого часто сталкиваются с проблемами при решении учебных заданий или практических ситуаций.
В этой статье мы и расскажем, как найти силу тока через мощность и напряжение или сопротивление.
Если известна мощность и напряжение
- Допустим вам нужно найти силу тока в цепи, при этом вам известны только напряжение и потребляемая мощность. Тогда чтобы её определить без сопротивления воспользуйтесь формулой:
- P=UI
- После несложных мы получаем формулу для вычислений
- I=P/U
Следует отметить, что такое выражение справедливо для цепей постоянного тока. Но при расчётах, например, для электродвигателя учитывают его полную мощность или косинус Фи. Тогда для трёхфазного двигателя его можно рассчитать так:
- Находим P с учетом КПД, обычно он лежит в пределах 0,75-0,88:
- Р1 = Р2/η
- Здесь P2 – активная полезная мощность на валу, η – КПД, оба этих параметра обычно указывают на шильдике.
- Находим полную мощность с учетом cosФ (он также указывается на шильдике):
- S = P1/cosφ
- Определяем потребляемый ток по формуле:
- Iном = S/(1,73·U)
Здесь 1,73 – корень из 3 (используется для расчетов трёхфазной цепи), U – напряжение, зависит от включения двигателя (треугольник или звезда) и количества вольт в сети (220, 380, 660 и т.д.). Хотя в нашей стране чаще всего встречается 380В.
Если известно напряжение или мощность и сопротивление
- Но встречаются задачи, когда вам известно напряжение на участке цепи и величина нагрузки, тогда чтобы найти силу тока без мощности воспользуйтесь законом Ома, с его помощью проводим расчёт силы тока через сопротивление и напряжение.
- I=U/R
- Но иногда случается так, что нужно определить силу тока без напряжения, то есть когда вам известна только мощность цепи и её сопротивление. В этом случае:
- P=UI
- При этом согласно тому же закону Ома:
- U=IR
- То:
- P=I2*R
- Значит расчёт проводим по формуле:
- I2=P/R
- Или возьмем выражение в правой части выражения под корень:
- I=(P/R)1/2
Если известно ЭДС, внутреннее сопротивление и нагрузка
- Ко студенческим задачам с подвохом можно отнести случаи, когда вам дают величину ЭДС и внутреннее сопротивление источника питания. В этом случае вы можете определить силу тока в схеме по закону Ома для полной цепи:
- I=E/(R+r)
- Здесь E – ЭДС, r – внутреннее сопротивление источника питания, R – нагрузки.
Закон Джоуля-Ленца
Еще одним заданием, которое может ввести в ступор даже более-менее опытного студента – это определить силу тока, если известно время, сопротивление и количество выделенного тепла проводником. Для этого вспомним закон Джоуля-Ленца.
- Его формула выглядит так:
- Q=I2Rt
- Тогда расчет проводите так:
- I2=QRt
- Или внесите правую часть уравнения под корень:
- I=(Q/Rt)1/2
Несколько примеров
В качестве заключения предлагаем закрепить полученную информацию на нескольких примерах задач, в которых нужно найти силу тока.
1 задача: Рассчитать I в цепи из двух резисторов при последовательном соединении и при параллельном соединении. R резисторов 1 и 2 Ома, источник питания на 12 Вольт.
Из условия ясно, что нужно привести два варианта ответа для каждого из вариантов соединений. Тогда чтобы найти ток при последовательном соединении, сначала складывают сопротивления схемы, чтобы получить общее.
- R1+R2=1+2=3 Ома
- Тогда рассчитать силу тока можно по закону Ома:
- I=U/R=12/3=4 Ампера
- При параллельном соединении двух элементов Rобщее можно рассчитать так:
- Rобщ=(R1*R2)/(R1+R2)=1*2/3=2/3=0,67
- Тогда дальнейшие вычисления можно проводить так:
- I=12*0,67=18А
2 задача: рассчитать ток при смешанном соединении элементов. На выходе источника питания 24В, а резисторы на: R1=1 Ом, R2=3 Ома, R3=3 Ома.
- В первую очередь нужно найти R общее параллельно соединенных R2 и R3, по той же формуле, что мы использовали выше.
- Rприв=(R2*R3)/(R2+R3)=(3*3)|(3+3)=9/6=3/2=1,5 Ома
- Теперь схема примет вид:
- Далее находим ток по тому же закону Ома:
- I=U/(R1+Rприв)=24/(1+1,5)=24/2,5=9,6 Ампер
Теперь вы знаете, как найти силу тока, зная мощность, сопротивление и напряжение. Надеемся, предоставленные формулы и примеры расчетов помогли вам усвоить материал!
Наверняка вы не знаете:
Источник: https://samelectrik.ru/kak-najti-silu-toka.html
Теория электроники §1 Напряжение Ток и Сопротивление
Новый раздел на канале который посвящён теоретическим основам электроники. Ведь без теории не может быть практики. Раздел нацелен на начинающих радиолюбителей или просто на читателей интересующихся данной темой. Разберём самые основы электроники, начиная с определений напряжения и тока а закончим микроконтроллерами. С минимум формул и энциклопедических определений необходимых для понимания процессов, протекающих в электронных схемах. Буду рад вашим м, дополнениям и уточнениям, а может быть и опровержениям.
Напряжение Ток и Сопротивление
Ток и напряжение понятия количественные и изменяемые во времени. Если бы они не изменялись во времени, они не представляли бы для нас интереса с точки зрения электронной схемы.
Напряжение
Как же представить себе, что такое напряжение? Представим себе две условных области и назовём их «+» и «-». Между этими областями перемещается некое тело с названием «электрон».
Так вот энергия, которая высвобождается при перемещении электрона от точки с высоким потенциалом «+» к точке с низким потенциалом «-» и будет являться напряжением. Также напряжение называют разностью потенциалов и электродвижущей силой. Измеряется напряжение в вольтах (В) и носит обозначение буквой U.
Что такое напряжение в один вольт (1В)? Это работа в один джоуль проделанная для перемещения заряда в один кулон между точками, имеющими разность потенциалов.
Ток
Итак, с напряжением определились. Заряды перемещаются между точками, высвобождается энергия, её количественный показатель определяется напряжением в вольтах.
Но здесь есть один нюанс, заключающийся в том, что эти самые заряды могут перемещаться с разной скоростью. Так вот скорость, с которой заряд перемещается между двумя точками и определяет ток. Ток измеряется в амперах (А) и обозначается буквой I.
Один ампер (1 А) это перемещение заряда в 1 кулон за время равное 1 секунде.
В электрике и электронике условились считать, что ток «течёт» от плюса к минусу. Но на самом деле носителями заряда являются электроны, которые перемещаются в противоположном направлении. Но это не суть важно, просто в дальнейшем при чтении разных схем мы будем принимать направление тока от плюса к минусу.
Напряжение в схемах всегда измеряется между двумя точками, например, между общим проводом и выводом какого-либо элемента. А ток всегда измеряется в конкретной точке, допустим ток, протекающий через резистор.
Основные правила для напряжения и тока
1. Сумма токов, втекающих в точку или узел на схеме, равна сумме токов, вытекающих из неё. Это закон сохранения заряда, который ещё носит название закона Кирхгофа. Из этого правила следует что для последовательной цепи, состоящей из элементов схемы у которых по два вывода, например, резисторов или диодов, ток в каждой точке одинаков.
2. При параллельном соединении элементов, допустим тех же диодов или резисторов, напряжение на каждом из них будет одинаково.
3. Электрическая мощность — работа совершаемая за единицу времени, потребляемая схемой мощность определяется как произведение тока и напряжения P=U*I.
Связь тока и напряжения: резисторы
Резисторы — это пассивные элементы электронной схемы, обладающие сопротивлением электрическому току. Служат они для преобразования напряжения и тока в величины необходимые для нормальной работы других участников электрической цепи.
Если привести пример из другой области, не связанной с электричеством, то, наверное, самой близкой окажется водопроводная система, которая состоит из подающей воду насосной станции (это в схеме источник напряжения и тока) и водопроводных труб разного диаметра со всякими ответвлениями потребителю. Так вот диаметр этих труб будет определять поток воды у принимающей стороны. В электронной схеме эту функцию выполняют как раз резисторы.
Напряжение и ток тесно связаны зависимостью определяемой сопротивлением R=U/I или I=U/R. Эта зависимость называется законом Ома.
Сопротивление резисторов измеряется в Омах, с различными приставками Кило и Мега.
Также резисторы характеризуются мощностью, которую они способны рассеять, ведь при преобразовании напряжения и тока часть энергии будет рассеиваться в качестве тепла.
Последовательное и параллельное соединение резисторов
В электронных схемах при проектировании, или просто для чтения, чтобы понять принцип её работы, часто необходимо считать сопротивление в определённых точках, чтобы затем вычислить величины токов и напряжений. В схеме резисторы имеют последовательные и параллельные соединения и надо чётко понимать, как изменится сопротивление при том или ином виде соединения.
Делитель напряжения
Простейшим примером использования резисторов в электронных схемах является схема делителя напряжения. Она позволяет получить на выходе некоторую часть входного напряжения.
Как видите всё считается по закону Ома. Допустим у нас входное напряжение равно 12 В, а необходимо снять с резистора R2 напряжение 5 В, тогда произведя расчет и используя стандартные значения резисторов нам потребуются сопротивления на 10К и 7,5К.
Для удобства навигации по разделу опубликована статья со ссылками, которые будут обновляться по мере добавления нового материала.
Источник: https://zen.yandex.ru/media/id/5c573873f583af00ad204474/5d6e24228c5be800aff355d8