Синхронный генератор переменного тока: устройство, принцип работы, применение

Синхронный генератор переменного тока: устройство, принцип работы, применение

С ростом научного прогресса и получением электрического тока, являющимся одним из основных видов энергии, жизнь человека стала намного комфортнее. Ведь благодаря ему, а точнее, его работе, приводятся в движение различные механизмы, освещаются и обогреваются помещения и так далее.

Синхронный генератор переменного тока: устройство, принцип работы, применение

Ток в проводнике появляется за счёт электродвижущей силы (ЭДС), заставляющей перемещаться частицы, несущие заряд в проводнике. Если проводник испытывает воздействие магнитного поля, то это явление называется электромагнитной индукцией.

Иными словами, если соблюдается следующее условие: двигается проводник в магнитном поле или электромагнитное поле совершает движение вокруг проводника, то в последнем появляется электрический ток. В результате этого явления были созданы трансформаторы, электродвигатели и генераторы.

Генератор тока является электрической машиной, преобразующей механическую энергию в электрическую. Это примитивное устройство, состоящее из проводника, представляющего замкнутый контур и вращающийся между полюсами магнита.

В современных генераторах этот контур содержит минимум три обмотки, необходимые для создания большей ЭДС. Для чёткого понимания предназначения и процессов, протекающих при преобразовании электроэнергии, нужно ознакомиться с устройством и принципом действия генератора (ЭГ).

Устройство генератора

Практически все они похожи по своему устройству, но есть некоторые отличия — это способ приведения механической части в движение (рисунок 1).

Он состоит из основных узлов:

  • корпус;
  • статор;
  • ротор, или якорь;
  • коробка коммутации.

Ещё один важный элемент — обгонная муфта генератора. Об особенностях её работы и ремонта читайте в материале нашего эксперта.Синхронный генератор переменного тока: устройство, принцип работы, применение

Рисунок 1. Генератор в разрезе

Корпус, выполняющий функцию рамы, служит для крепления всех основных частей. Кроме того, в нём устанавливаются подшипники, необходимые для плавного вращения вала и увеличения срока службы устройства. Корпус изготавливают из прочного металла, а также он служит для защиты внутренних частей машины от внешних повреждений.

Статор имеет магнитные полюса, представленные в виде закреплённой обмотки для возбуждения магнитного потока Ф. Выполняется из спецстали, которая называется ферромагнитной.

Ротор является подвижной частью, причем его приводит в движение какая-либо сила. В результате на якоре (роторе) образуется разность потенциалов или напряжение (U). Узел (коробка) коммутации, необходим для отведения электричества от ротора.

Он состоит из проводящих колец, соединённых с графитовыми токосъёмными контактами.

Принцип действия

Закон электромагнитной индукции является основным принципом действия генератора переменного тока. Устройство и принцип работы практически одинаковы для всех типов. Происходит индукция, в результате которой появляется ЭДС в контуре, при вращении в однородном магнитном поле. Это магнитное поле вращается.

Работает генератор переменного тока следующим образом:

  • ротор является магнитом, передающим при вращении магнитное поле в обмотки статора;
  • статор представляет собой катушки, к которым подведены провода для съёма электрической энергии;
  • при возникновении U происходит его съём.

Синхронный генератор переменного тока: устройство, принцип работы, применение

Кольца выполняются из медного проводника, вращаются с ротором и валом одновременно. Щётки служат для передачи тока с вала на кольца. Разновидностей очень много и, следовательно, их можно классифицировать по следующим признакам:

  • конструктивный план;
  • метод возбуждения;
  • количество фаз: однофазные, двухфазные и трёхфазные;
  • тип соединения обмоток статора.

По конструктивному плану бывают с неподвижными полюсами и якорем (он вращается) и, наоборот, с вращающимися магнитными полюсами (якорь остаётся неподвижным). Последний вид получил широкое распространение, благодаря получению большего тока.

При вращении ротора, полюсные наконечники которого имеют минимальный зазор между статором для создания максимального Ф, происходит генерация ЭДС в витках статорной катушки.

Наконечники подбираются такой формы, чтобы U было близко к синусоидальному.

По методу возбуждения также делятся на подвиды.

  1. Обмотки питаются постоянным током (независимое возбуждение). Эта модель приводится в действие при помощи другого генератора.
  2. Питается своим же выпрямленным током (с самовозбуждением).
  3. Возбуждение от постоянных магнитов.

Наиболее часто применяется соединение звездой и нейтральный провод, который выполняет роль компенсатора фазовых перекосов. Кроме того, нулевой провод позволяет исключить постоянную составляющую при возникновении вредоносных кольцевых токов (далее I), снижающих мощность и влияющих на нагрев.

К генератору, обмотки которого соединены по типу звезды, подключается активная нагрузка с нейтральным проводом. Кроме того, бывает соединение треугольником , которое применяется редко.

При таком подключении обмоток можно подключать устройства небольшой мощности. Генераторы отличаются между собой техническими параметрами.

Технические параметры

Генераторы отличаются также основными величинами, которые являются техническими параметрами. Среди всего числа можно выделить наиболее значимые:

  • электрическое U;
  • вырабатываемый I;
  • мощность (далее P);
  • частота вращения (обороты в минуту);
  • коэффициент P — cos ф.

Регулируется U благодаря изменению Ф при последовательном подключении в цепь обмоток возбуждения регуляторов U (переменный резистор или электронный регулятор U). При наличии генератора-возбудителя ток непосредственно регулируется на нём. При использовании генераторов переменного U от постоянных магнитов следует применить стабилизаторы U или регуляторы.

Синхронный генератор переменного тока: устройство, принцип работы, применение

При подключении в цепь используют параллельное соединение ЭГ, один из которых считается резервным. Для подключения резервного ЭГ к шинам-проводникам нужно выполнять условие равенства ЭДС и U на этих шинах.

Также фазовый сдвиг должен быть равен нулю. Этот процесс получил название синхронизации ЭГ.

Для осуществления синхронизации генератора с сетью применяют синхроскоп, представляющий обыкновенную лампу накаливания и вольтметр (нулевой).

Синхроскоп подключается к генератору последовательно. При пуске генератора регулируется I возбуждения. Если генератор синхронизирован, то лампы гаснут, а до этого — моргают.

Чем чаще они моргают, тем быстрее процесс синхронизации и регулировка близятся к завершающей стадии. Нужно обратить внимание на вольтметр, который должен при синхронизированном ЭГ показывать значение, равное 0.

Более подробную информацию о том, как проверить генератор, вы сможете найти в интересном материале нашего специалиста.

Основное предназначение

Генераторы широко используются для производства электроэнергии и представляют собой огромные машины, вырабатывающие ток высокой мощности. Однако не все разновидности имеют такие габариты.

Устройства, применяемые в автотранспорте, используются в качестве источников U.

Это очень удобно, так как ходовая часть транспорта совершает механические движения и глупо не воспользоваться этим видом энергии для вращения ЭГ.

Генераторы трёхфазного типа переменного тока применяются вместе с мостовым выпрямителем и используются для зарядки аккумулятора.

Кроме того, они используются для питания электропотребителей, например, системы зажигания, световой сигнализации и освещения, бортового компьютера и так далее. Подключается устройство к регулятору U, благодаря которому величина U остается постоянной.

В авто применяются устройства переменного тока, так как они имеют меньшие размеры относительно своих собратьев — ЭГ постоянного U.

Синхронный генератор переменного тока: устройство, принцип работы, применение

Виды приборов

Несмотря на одинаковое строение, они применяются в различных видах устройств и типах транспорта. Определённый тип ЭГ применяется в различных ситуациях. Выделяют основные виды устройств-генераторов, которые классифицируются по типу применения:

  • автомобильный;
  • электрический;
  • инвентарный;
  • дизельный;
  • синхронный;
  • асинхронный;
  • электрохимический.

Основным предназначением автомобильного аккумулятора является вращение коленвала. Применяется новый тип — гибридный генератор, выполняющий роль стартера.

Основным принципом работы можно считать использование для включения зажигания, при этом I течёт по контактным кольцам, а затем к щелочной части.

Далее переходит на обмотку возбуждения, образовывается магнитное поле и запускается ротор, создающий электромагнитные волны.

Эти волны пронизывают обмотку статора. После происходит возникновение переменного тока на выходе обмотки. Если генератор осуществляет работу в режиме самовозбуждения, то при этом частота вращения увеличивается до допустимого значения, а переменный ток преобразуется в постоянный при помощи выпрямителя.

Электрогенератор выполняет функции преобразователя механической энергии в электрическую. Источников может быть много: вода, пар, ветер, ДВЗ и другие сторонние силы, оказывающие механическую работу на ротор генератора.

Очень распространён инверторный тип ЭГ. Он представляет собой автономный источник питания, который производит качественную электрическую энергию. Применяется практически везде и является очень надежным источником питания, при котором отсутствуют любые скачки U. Основной принцип действия:

  • вырабатывается переменный высококачественный ток, который при помощи диодного моста выпрямляется;
  • постоянный ток накапливается в аккумуляторах;
  • из аккумуляторов при помощи инвертора происходит преобразование в переменный стабилизированный ток.

Ещё одним отличным и долговечным вариантом является дизельный ЭГ, преобразующий энергию топлива в электрическую. Топливо сгорает и преобразовывается из химического вида энергии в тепловую. Затем тепловая энергия преобразовывается в механическую. Затем происходит трансформация по старой схеме: механическая энергия в электрическую.

Синхронный генератор переменного тока: устройство, принцип работы, применение

В синхронном ЭГ ротор выполняет роль постоянного магнита с полюсами, число которых колеблется от 2 и более. Однако должна соблюдаться кратность 2. Во время запуска ротор генерирует слабое электромагнитное поле, но в процессе увеличения частоты вращения появляется ток в обмотке возбуждения.

Во время этого процесса появляется U, поступающее на устройство, контролирующее его значение при изменении электромагнитного поля. Генераторы синхронного типа отлично зарекомендовали себя благодаря стабильно вырабатываемому U.

Однако у них есть существенный недостаток — возможна перегрузка по току, а также наличие щёточного узла, который приходится иногда обслуживать.

Принцип работы ЭГ асинхронного типа основан на постоянном нахождении в режиме «торможения с подвижной частью», вращающейся с опережением. Ротор бывает фазным и короткозамкнутым. Вспомогательное магнитное поле создаётся при помощи обмотки возбуждения и продолжает индуцироваться в роторе. От количества оборотов зависит частота тока и U.

Очень интересным источником электричества является электрохимический генератор. Энергия электрического типа получается из водорода. Он является химическим источником тока, так как проходит реакция этого типа взаимодействия молекул кислорода и водорода.

Однако этот источник довольно опасен. Ведь водород может и взорваться при больших количествах, а кислород выполняет роль катализатора. В очаге взрыва водорода произойдёт значительное возгорание, так как кислород усилит горение.

Кроме того, при использовании ЭГ нужно совместно с ними применять и устройства, регулирующие параметры U и частоты. Принцип работы устройства заключается в поддержании постоянных значений U и других параметров электроэнергии для качественного питания потребителей.

Регулятор также защищает генератор от перегрузок и аварийного режима. При возникновении аварийной ситуации при наличии регулятора, генератор не запустится и останется в выключенном состоянии. Это возможно при КЗ в цепи потребителей.

Эти приборы улавливают U, частоту и I, а также Ф.

Синхронный генератор переменного тока: устройство, принцип работы, применение

Вывод

Таким образом, существует огромное количество видов генераторов переменного тока, которые используются в той или иной жизненной ситуации. Они обладают всевозможными видами защиты от перегрузок, перегрева, токов КЗ. Основной принцип работы заключается в преобразовании энергии различного типа в электрическую.

Пожалуйста, оцените этот материал!

(9

Источник: https://motorsguide.ru/gadgets/generator-peremennogo-toka

Синхронный генератор. Устройство генератора и принцип действия :

Синхронный генератор – машина (механизм) переменного тока, которая преобразовывает определенный тип энергии в электроэнергию. К таким устройствам относят электростатические машины, гальванические элементы, солнечные батареи, термобатареи и т. п. Использование каждого вида из перечисленных приборов определяется их техническими характеристиками.

Синхронный генератор переменного тока: устройство, принцип работы, применение

Область применения

Применяют синхронные агрегаты как источники электроэнергии переменного тока: используют на мощных тепло-, гидро- и атомных станциях, на передвижных электрических станциях, транспортных системах (машинах, самолетах, тепловозах). Синхронный агрегат способен работать автономно – генератором, который питает подключаемую к ней какую-либо нагрузку, либо параллельно с сетью — в нее подключены иные генераторы.

Синхронный генератор переменного тока: устройство, принцип работы, применение

Синхронный агрегат может включать устройства в тех местах, где нет центрального питания электрических сетей. Данные приборы можно применять в фермерских хозяйствах, которые расположены далеко от населенных пунктов.

Описание прибора

Устройство синхронного генератора обусловлено наличием таких элементов, как:

  • Ротор, или индуктор (подвижный, вращающийся), в который входит обмотка возбуждения.
  • Якорь, или статор (недвижимый), в который включается обмотка.
  • Обмотка агрегата.
  • Переключатель катушки статора.
  • Выпрямитель.
  • Несколько кабелей.
  • Структура электрического компаундирования.
  • Сварочный аппарат.
  • Катушка ротора.
  • Регулируемый поставщик постоянного электротока.

Синхронный генератор работает в качестве генераторов и моторов. Он может переходить от графика работы генератора к графику двигателя – это зависит от действия вращающей либо тормозящей силы прибора. В графике генератора в него входит механическая, а исходит электроэнергия. В графике двигателя в него входит электрическая, а исходит механическая энергия.

Синхронный генератор переменного тока: устройство, принцип работы, применение

Прибор включается в цепь переменного тока разного типа нелинейных сопротивлений. Синхронные агрегаты являются генераторами переменного тока на электростанциях, а синхронные моторы используются тогда, когда необходим двигатель, что работает с постоянной крутящейся частотой.

Принцип работы агрегата

Работа синхронного генератора осуществляется по принципу электромагнитной индукции. Во время холостого движения якорная (статорная) катушка разомкнута, поэтому магнитное поле агрегата формируется одной обмоткой ротора.

Когда ротор крутится от проводного мотора, у него присутствует постоянная частота, роторное магнитное поле перемещается через проводники обмоток фаз статора и осуществляет наводку повторяющихся переменных токов – электродвижущую силу (ЭДС).

ЭДС носит синусоидальный, несинусоидальный либо пульсирующий характер.

Синхронный генератор переменного тока: устройство, принцип работы, применение

Обмотка возбуждения предназначается для создания в генераторе первоначального магнитного поля, чтобы навести в катушку якоря электрическую движущую силу.

В случае если якорь синхронного генератора приводят в движение путем вращения с определенной скоростью, затем возбуждают источником постоянных токов, то поток возбуждения переходит через проводники катушек статора, и в фазах катушки индуцируются переменные ЭДС.

Трехфазное устройство

Трехфазный синхронный генератор – устройство, имеющее трехфазную структуру переменного тока, которая имеет огромное практическое распространение.

Крутящийся электромагнит способен образовывать магнитный поток (переменный), который перемещается через три фазы обмотки имеющегося статора.

И результатом этого является то, что в фазах происходит переменная ЭДС однотипной частоты, сдвиг фаз осуществляется под углом, равным одной третьей периода вращения магнитных полей.

Трехфазный синхронный генератор оборудован так, что на его валу якорь является электромагнитом и питается от генератора. Когда вал вращается, к примеру, от турбины, генератор поставляет электроток, в то время как обмотка ротора питается поставляемым током. От этого якорь становится электрическим магнитом и, осуществляя обороты с тем же валом, доставляет вращающееся электромагнитное поле.

Синхронный генератор переменного тока: устройство, принцип работы, применение

Благодаря синхронным трехфазным гидро- и турбогенераторам производится большая часть электроэнергии. Синхронные агрегаты применяются и в качестве электромоторов в таких устройствах, у которых мощность превышает 50 кВт. Во время работы синхронного агрегата в графике двигателя сам ротор соединяют с источником постоянных токов, статор же подключают к трехфазному кабелю.

Структуры возбуждения

Любые турбо-, гидро-, дизельные генераторы, синхронные компенсаторы, моторы, производимые на данный момент, оснащаются новейшими полупроводниковыми структурами, такими как возбуждение синхронных генераторов. В данных структурах применяется метод выпрямления трехфазных переменных токов возбудителей высокой или промышленной частоты либо напряжения возбуждаемого агрегата.

Устройство генератора таково, что структуры возбуждения могут обеспечить такие параметры работы агрегата, как:

  • Первая стадия возбуждения, то есть начальная.
  • Работа вхолостую.
  • Подключение к сети способом точной синхронизации либо самосинхронизации.
  • Работа в энергетической структуре с имеющимися нагрузками или перегрузками.
  • Возбуждение синхронных приборовможет быть форсировано по таким критериям, как напряжение и ток, имеющими заданную кратность.
  • Электроторможение аппарата.

Конструкция генератора

На данный момент производится много видов индукционных приборов, но устройство генератора создано так, что в них присутствуют одинаковые части:

  • Электромагнит либо постоянный магнит, что производит магнитное поле.
  • Обмотка с индуцирующейся переменной ЭДС.

Чтобы получить наибольший магнитный поток, во всех генераторах используют специальную магнитную структуру, которая состоит из двух стальных сердечников.

Синхронный генератор переменного тока: устройство, принцип работы, применение

Обмотки, что создают магнитное поле, установлены в пазах одного из сердечников, а обмотки, индуцируемые ЭДС – в пазах другого. Один из сердечников — внутренний — взаимодействует со своей обмоткой и крутится вокруг горизонтального либо вертикального стержня. Такой стержень называется ротором. Недвижимый сердечник с обмоткой называется якорем (статором).

Характеристики прибора

Для оценки функции синхронных генераторов применяются те же самые характеристики, какие применяются в генераторах постоянного тока. Только некоторые условия различаются и дополняются.

Главные характеристики синхронного генератора такие:

  • Холостой ход – это зависимость ЭДС прибора от токов возбуждения, одновременно является показателем намагничивания магнитных цепей машины.
  • Внешняя характеристика – это зависимость напряжения устройства от токов нагрузки. Напряжение агрегата меняется по-разному в зависимости от увеличения нагрузки при различных ее видах. Причины, что вызывают такие изменения, следующие:
  1. Падение значения напряжения на индуктивном и активном сопротивлении обмоток устройства. Увеличивается по мере того, как увеличивается нагрузка прибора, то есть его ток.
  2. Изменение ЭДС агрегата. Происходит в зависимости от реакции статора. При активных нагрузках уменьшение напряжения будет вызвано падением напряжения во всех обмотках, потому что реакция статора влечет за собой увеличение ЭДС генератора. При активно-емкостных видах нагрузки эффект намагничивания вызывает увеличение текущего значения напряжения по сравнению с номинальным показателем.
  • Регулировочные характеристики синхронного генератора – это зависимость токов возбуждения от токов нагрузки. В процессе работы синхронных агрегатов нужно поддерживать постоянное напряжение на их зажимах независимо от характера и величины нагрузок. Этого несложно достигнуть, если регулировать ЭДС генератора. Это можно сделать путем изменения токов воз­буждения автоматически в зависимости от изменений нагрузок, то есть при активно-емкостной нагрузке нужно уменьшать ток возбуждения для поддержания постоянного напряжения, а при активно-индуктивной и активной — увеличивать.

Синхронный генератор переменного тока: устройство, принцип работы, применение

Мощность синхронного генератора определяется такими значениями:

  • Соответствующим напряжением в электросети.
  • Своей ЭДС.
  • Углом измерения.

Прибор переменного тока

Синхронный генератор переменного тока – это электромашина, что преобразует механическую вращательную энергию в электрическую энергию переменных токов. Мощные генераторы таких токов устанавливают:

  • гидрогенератор турбогенератор – на электростанциях;
  • приборы переменного тока сравнительно небольшой мощности — в системах автономного энергоснабжения (газотурбинная электростанция, дизельная электростанция) и в частотных преобразователях (двигатель-генератор).

В настоящее время выпускается множество типов таких приборов, но все они имеют общее устройство главных элементов:

  • якорь (статор) – неподвижный;
  • крутящийся вокруг оси ротор.

В промышленных генераторах больших размеров вращается электромагнит, являющийся ротором. Одновременно с этим обмотки с наводящимися ЭДС, уложенные в пазы статора, остаются неподвижными.

В таких устройствах, как маломощный синхронный генератор, магнитное поле создается вращающимся постоянным магнитом.

Виды синхронных агрегатов

Существуют следующие виды синхронных генераторов:

  1. Гидро – в нем ротор имеет отличие за счет присутствия явно выраженных полюсов, применяется при производстве электроэнергии, осуществляет работу на малых оборотах.
  2. Турбо – имеет отличия неявнополюсным строением генератора, производится от турбин разного вида, скорость оборотов довольно высокая, достигает порядка 6000 оборотов в минуту.
  3. Компенсатор синхронный – данный агрегат поставляет реактивную мощность, применяется для повышения качества электроэнергии, чтобы стабилизировать напряжение.
  4. Асинхронный агрегат двойного питания – устройство генератора такого типа заключается в том, что в нем подключается как роторная, так и статорная обмотки от поставщика токов с различной частотой. Создается асинхронный график работы. Также он отличается устойчивостью графика работы и тем, что преобразовывает разные токи фаз и используется для решения задач с узкой специализацией.
  5. Двухполюсный ударный агрегат – работает в графике короткого замыкания, воздействует кратковременно, в миллисекундах. Также испытывает аппараты с высоким напряжением.

Разновидности агрегатов

Синхронный генератор (мотор) подразделяется на несколько моделей, которые предназначены для разнообразных целей:

  • Шаговые (импульсные) – применяются для приводов механизмов с циклом работы старт-стоп или устройств непрерывного движения с импульсным управляющим сигналом (счетчиков, лентопротяжных устройств, приводов станков с ЧПУ и др.).
  • Безредукторные – для применения в автономных системах.
  • Бесконтактные – применяются для работы в качестве электростанций на судах морского и речного флота.
  • Гистерезисные – используются для счетчиков времени, в инерционных электроприводах, в системах автоматического управления;
  • Индукторные моторы – для снабжения электроустановок.

Разделение по виду ротора

По роду прибора ротора устройство генератора подразделяется на:

  • Явнополюсное – с выступающими либо с явно выраженными полюсами. Данные роторы применяются в генераторах с тихим ходом, у которых скорость вращения не превышает 1000 оборотов в минуту.
  • Неявнополюсное – это ротор с формами цилиндра, у которого нет выступающих полюсов. Данные якоря бывают двухполюсными и четырехполюсными.

В первом случае ротор состоит из крестовины, на которой закрепляют сердечники полюсов или обмотки возбуждения. Во-втором – быстроходные агрегаты с числом оборотов 1500 либо 3000. Ротор сделан в виде цилиндра из стали довольно высокого качества с пазами, в них устанавливают обмотку возбуждения, состоящую из отдельных обмоток различной ширины.

Источник: https://www.syl.ru/article/187258/new_sinhronnyiy-generator-ustroystvo-generatora-i-printsip-deystviya

Генераторы переменного тока

Генератор — устройство, преобразующее один вид энергии в другой. В данном случае рассматриваем преобразование механической энергии вращения в электрическую.

Различают два типа таких генераторов. Синхронные и асинхронные.

Синхронный генератор. Принцип действия

  • Отличительным признаком синхронного генератора является жёсткая связь между частотой f переменной ЭДС, наведённой в обмотке статора, и частотой вращения ротора n , называемой синхронной частотой вращения:
  • n = f / p
  • где p – число пар полюсов обмотки статора и ротора. Обычно частота вращения выражается в об/мин, а частота ЭДС в Герцах (1/сек), тогда для количества оборотов в минуту формула примет вид:
  • n = 60·f / p

Синхронный генератор переменного тока: устройство, принцип работы, применение

Приводным двигателем (ПД), в качестве которого используется турбина, двигатель внутреннего сгорания либо другой источник механической энергии, ротор генератора приводится во вращение с синхронной скоростью. При этом магнитное поле электромагнита ротора также вращается с синхронной скоростью и индуцирует в трёхфазной обмотке статора переменные ЭДС EA , EB и EC , которые будучи одинаковыми по значению и сдвинутыми по фазе относительно друг друга на 1/3 периода (120°), образуют симметричную трёхфазную систему ЭДС.

C подключением нагрузки к зажимам обмотки статора С1, С2 и С3 в фазах обмотки статора появляются токи IA, IB, IC , которые создают вращающееся магнитное поле.

Частота вращения этого поля равна частоте вращения ротора генератора. Таким образом, в синхронном генераторе магнитное поле статора и ротор вращаются синхронно.

Мгновенное значение ЭДС обмотки статора в рассматриваемом синхронном генераторе

e = 2Blwv = 2πBlwDn

Здесь: B – магнитная индукция в воздушном зазоре между сердечником статора и полюсами ротора, Тл; l – активная длина одной пазовой стороны обмотки статора, т.е. длина сердечника статора, м; w – количество витков; v = πDn – линейная скорость движения полюсов ротора относительно статора, м/с; D – внутренний диаметр сердечника статора, м.

Формула ЭДС показывает, что при неизменной частоте вращения ротора n форма графика переменной ЭДС обмотки якоря (ста- тора) определяется исключительно законом распределения магнитной индукции B в зазоре между статором и полюсами ротора.

Если график магнитной индукции в зазоре представляет собой синусоиду B = Bmax sinα , то ЭДС генератора также будет синусоидальной. В синхронных машинах всегда стремятся получить распределение индукции в зазоре как можно ближе к синусоидальному.

Синхронный генератор переменного тока: устройство, принцип работы, применение Так, если воздушный зазор δ постоянен (рис. 1.2), то магнитная индукция B в воздушном зазоре распределяется по трапецеидальному закону (график 1). Если же края полюсов ротора «скосить» так, чтобы зазор на краях полюсных наконечников был равен δmax (как это показано на рис. 1.2), то график распределения магнитной индукции в зазоре приблизится к синусоиде (график 2), а, следовательно, и график ЭДС, индуцированной в обмотке генератора, приблизится к синусоиде. Частота ЭДС синхронного генератора f (Гц) пропорциональна синхронной частоте вращения ротора n (об/с)

f = pn

где p – число пар полюсов. В рассматриваемом генераторе (см. рис.1.1) два полюса, т.е. p = 1. Для получения ЭДС промышленной частоты (50 Гц) в таком генераторе ротор необходимо вращать с частотой n = 50 об/с (n = 3000 об/мин).

Способы возбуждения синхронных генераторов

Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле.

До последнего времени для питания обмотки возбуждения применялись преимущественно специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В (рис. 1.3, а). Обмотка возбуждения (ОВ) получает питание от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ).

Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя r1 и подвозбудителя r2 .

В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.

Синхронный генератор переменного тока: устройство, принцип работы, применение

В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока В (рис. 1.

3, б).

Трехфазная обмотка 2 возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель 3 непосредственно, без контактных колец и щёток. Питание постоянным током обмотки возбуждения 1 возбудителя В осуществляется от подвозбудителя ПВ – генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронного генератора позволяет повысить её эксплуатационную надёжность и увеличить КПД.

В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.

4, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь ПП преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины.

Синхронный генератор переменного тока: устройство, принцип работы, применение

На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подаётся в обмотку возбуждения.

Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбуждения АРВ, на вход которого поступают сигналы напряжения на входе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ).

Схема содержит блок защиты (БЗ), обеспечивающий защиту обмотки возбуждения (ОВ) от перенапряжения и токовой перегрузки.

Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности). В генераторах малой мощности находит применение принцип возбуждения постоянными магнитами, расположенными на роторе машины.

Такой способ возбуждения даёт возможность избавить генератор от обмотки возбуждения. В результате конструкция генератора существенно упрощается, становится более экономичной и надёжной.

Однако, из-за высокой стоимости материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничено машинами мощностью не более нескольких киловатт.

Синхронные генераторы составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов. Так же синхронные генераторы находят широкое применение в составе стационарных и передвижных электроустановок или станций в комплекте с дизельными и бензиновыми двигателями.

Асинхронный генератор. Отличия от синхронного

Асинхронные генераторы принципиально отличаются от синхронных отсутствием жесткой зависимости между частотой вращения ротора и вырабатываемой ЭДС. Разницу между этими частотами характеризует коэффициент s — скольжение.

s = (n — n r )/n

здесь: n — частота вращения магнитного поля (частота ЭДС). n r — частота вращения ротора.

Более подробно с расчётом скольжения и частоты можно ознакомиться в статье: асинхронные генераторы. Частота.

В обычном режиме электромагнитное поле асинхронного генератора под нагрузкой оказывает тормозной момент на вращения ротора, следовательно, частота изменения магнитного поля меньше, поэтому скольжение будет отрицательным. К генераторам, работающим в области положительных скольжений, можно отнести асинхронные тахогенераторы и преобразователи частоты.

Асинхронные генераторы в зависимости от конкретных условий применения выполняются с короткозамкнутым, фазным или полым ротором. Источниками формирования необходимой энергии возбуждения ротора могут являться статические конденсаторы или вентильные преобразователи с искусственной коммутацией вентилей.

Асинхронные генераторы можно классифицировать по способу возбуждения, характеру выходной частоты (изменяющаяся, постоянная), способу стабилизации напряжения, рабочим областям скольжения, конструктивному выполнению и числу фаз. Последние два признака характеризуют конструктивные особенности генераторов. Характер выходной частоты и методы стабилизации напряжения в значительной степени обусловлены способом образования магнитного потока.

  1. Классификация по способу возбуждения является основной.
  2. Можно рассмотреть генераторы с самовозбуждением и с независимым возбуждением.
  3. Самовозбуждение в асинхронных генераторах может быть организовано: а) с помощью конденсаторов, включенных в цепь статора или ротора или одновременно в первичную и вторичную цепи; б) посредством вентильных преобразователей с естественной и искусственной коммутацией вентилей.
  4. Независимое возбуждение может осуществляться от внешнего источника переменного напряжения.

По характеру частоты самовозбуждающиеся генераторы разделяются на две группы. К первой из них относятся источники практически постоянной (или постоянной) частоты, ко второй переменной (регулируемой) частоты. Последние применяются для питания асинхронных двигателей с плавным изменением частоты вращения.

Более подробно рассмотреть принцип работы и конструктивные особенности асинхронных генераторов планируется рассмотреть в отдельных публикациях.

Асинхронные генераторы не требуют в конструкции сложных узлов для организации возбуждения постоянным током или применения дорогостоящих материалов с большим запасом магнитной энергии, поэтому находят широкое применение у пользователей передвижных электроустановок по причине своей простоты и неприхотливости в обслуживании. Используются для питания устройств, не требующих жёсткой привязки к частоте тока. Техническим достоинством асинхронных генераторов можно признать их устойчивость к перегрузкам и коротким замыканиям. С некоторой информацией по мобильным генераторным установкам можно ознакомиться на странице:

Дизель-генераторы.

Асинхронный генератор. Характеристики. Асинхронный генератор. Стабилизация.

Замечания и предложения принимаются и приветствуются!

Источник: https://tel-spb.ru/dizel_generator/sinc_g.php

Как устроен генератор переменного тока – назначение и принцип действия

Главная › Электрооборудование ›

09.04.2019

Люди пользуются энергией электрического тока практически во всех сферах своей деятельности. Сейчас нелегко представить жизнь без электричества, которое с помощью специального оборудования преобразуется из механической энергии. Рассмотрим подробнее, как происходит этот процесс, и как устроены современные генераторы.

Синхронный генератор переменного тока: устройство, принцип работы, применение

Превращение механической энергии в электрическую

Любой генератор работает по принципу магнитной индукции. Самый простой генератор переменного тока можно представить, как катушку, которая вращается в магнитном поле.

Также есть вариант, при котором катушка остается неподвижной, но магнитное поле только её пересекает. Именно во время этого движения и вырабатывается переменный ток.

По такому принципу функционирует огромное количество генераторов во всем мире, объединенных в систему электроснабжения.

Устройство и конструкция генератора переменного тока

Стандартный электрогенератор имеет следующие компоненты:

  • Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
  • Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
  • Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
  • Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.

Синхронный генератор переменного тока: устройство, принцип работы, применение

В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:

  1. Ротор – подвижная цельная деталь из железа;
  2. Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.

Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:

  • С подвижным якорем и статическим магнитным полем.
  • С неподвижным якорем и вращающимся магнитным полем.

В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.

Синхронный генератор переменного тока: устройство, принцип работы, применение

Схема генератора переменного тока

Принцип работы электрогенератора: в тот момент, когда половина обмотки находится на одном из полюсов, а другая на противоположном, ток движется по цепи от минимального до максимального значения и обратно.

Классификация и виды агрегатов

Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия.

Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество.

Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.

По принципу работы

Разделяют асинхронные и синхронные генераторы переменного тока.

Асинхронный

У асинхронных электрогенераторов нет точной зависимости ЭДС от частоты вращения ротора, но здесь работает такой термин, как «скольжение S». Оно определяет эту разницу. Величина скольжения вычисляется, поэтому некоторое влияние элементов генератора в электромеханическом процессе асинхронного двигателя все же есть.

Синхронный

Синхронный генератор переменного тока: устройство, принцип работы, применение

Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток.Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.

По типу топлива двигателя

Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.

Источник: https://odinelectric.ru/equipment/kak-ustroen-generator-peremennogo-toka

90. . Принцип действия синхронного генератора

Синхронная
машина состоит из двух основных частей:
неподвижной — статора и вращающейся —
ротора, и имеет две основные обмотки.
Одна обмотка подключает­ся к источнику
постоянного тока. Протекающий по этой
обмотке ток создает основное магнитное
поле машины. Эта обмотка располагается
на полюсах и называется обмот­кой
возбуждения.

Иногда у машин небольшой
мощ­ности обмотка возбуждения
отсутствует, а магнитное поле создается
постоянными магнитами. Другая обмотка
явля­ется обмоткой якоря. В ней
индуктируется основная ЭДС машины. Она
укладывается в пазы якоря и состоит из
од­ной, двух или трех обмоток фаз.

Наибольшее распростра­нение в
синхронных машинах нашли трехфазные
обмотки якоря.

В
синхронных машинах чаще всего находит
применение конструкция, при которой,
обмотка якоря располагается на статоре,
а обмотка возбуждения — на роторе (рис.
1). Синхронные машины небольшой мощности
иногда имеют обращенное исполнение,
когда обмотка якоря располагает­ся
на роторе, а обмотка возбуждения — на
полюсах стато­ра (рис. 2). В электромагнитном
отношении обе конструкции равноценны.

 Рассмотрим
принцип действия синхронного генератора.
Если через обмотку возбуждения протекает
постоянный ток, то он создает постоянное
во времени магнитное поле с чередующейся
полярностью. При вращении полюсов и,
следовательно, магнитного поля
относительно проводников обмотки якоря
в них индуктируются переменные ЭДС,
которые, суммируясь, определяют
результирующие ЭДС фаз.

Если
на якоре уложены три одинаковые обмотки,
маг­нитные оси которых сдвинуты в
пространстве на электри­ческий угол,
равный 120°, то в этих обмотках индуктируют­ся
ЭДС, образующие трехфазную систему.
Частота индук­тируемых в обмотках
ЭДС зависит от числа пар полюсов р
и
частоты вращения ротора п:

Поток ротора
направим
влево по оси абсцисс (рис. 3.4). Вектор ЭДС,
индуктируемой потоком ротора

LS0H/img-_FHmMA.png» width=»12″>,
отстает от него на 90 градусов. Вектор
тока статораотстает
от вектора

png» width=»21″>на
угол ψ, определяемый выражением:

xH
и RH
— индуктивное и активное сопротивление
цепи нагрузки генератора.

Чтобы определить
положение вектора ,
опустим из конца вектораперпендикуляр
на направление вектора

LS0H/img-qqfVhY.png» width=»13″>.
На этом перпендикуляре, чтобы вычесть
изреактивное
напряжение,
отложим это реактивное напряжение вниз.

Затем влево из полученной точки,
параллельно векторуотложим
активное напряжение.

Соединив полученную точку с началом
координат, мы найдем вектор напряжения.
Соединив ту же точку с концом вектора

png» width=»21″>,
получим треугольник внутренних падений
напряжения генератора с гипотену

диаграмма синхронного
двигателя

Будем считать, что
возбуждение машины при переходе от
генераторного режима к двигательному
осталось неизменным, и поэтому сохраним
в диаграмме двигателя, как и в диаграмме
генератора, ту же длину вектора ,
но отложим теперь

LS0H/img-fq62gK.png» width=»21″>отстающим
отна
угол θ. Направление вектораопределяется
условием.

Чтобы определить направление векторапродолжим(полученное
вычитанием из вектора

png» width=»21″>вектора)
и на эту прямую опустим перпендикуляр
из начала координат и отложим на нем.
Теперь

png» width=»13″>отстает отболее
чем на 90 градусов. Положительную мощность
токсоздает
не с

png» width=»23″>,
а с напряжением сети.
Векторы потокови

png» width=»22″>строим
каждый под углом 90 градусов к вектору
индуктируемой ими ЭДС (т е. ки).

Режим двигателя
устойчив при изменении θ в пределах от
0 до -90 и неустойчив при θ

Источник: https://studfile.net/preview/4598314/

Ссылка на основную публикацию