Фототранзистор: принцип работы, как проверить

В последнее время мне приходится по работе, почти каждый день заниматься ремонтами ЖК телевизоров, в маленькой частной мастерской.  Тема эта достаточно рентабельная, и если заниматься преимущественно блоками питания и инверторами, не слишком сложная.

Как известно, питается ЖК телевизор, как практически и вся современная электронная техника, от импульсного блока питания. Последний же, содержит в своем составе деталь, под названием оптрон или оптопара.

Деталь эта предназначена для гальванической развязки цепей, что часто бывает необходимо в целях безопасности для работы схемы устройства. В составе этой детали находятся, обычные светодиод и фототранзистор.

Как же оптрон работает? Упрощенно говоря, это можно описать, как что-то типа своего рода маломощного электронного реле, с контактами на замыкание. Далее приведена схема оптопары:

Фототранзистор: принцип работы, как проверить

Схема оптопары

А вот тоже самое, но уже со странички официального даташита:

Фототранзистор: принцип работы, как проверить

Распиновка оптопары

Ниже приведена информация из даташита, в более полном варианте:

Фототранзистор: принцип работы, как проверить

Корпус оптопары

Оптроны часто выпускается в корпусе Dip, по крайней мере те, которые используются в импульсных блоках питания, и имеют 4 ножки.

Фототранзистор: принцип работы, как проверить

Оптопара на фото

Первая ножка микросхемы, по стандарту обозначается ключом, точкой на корпусе микросхемы, она же анод светодиода, далее номера ножек идут по окружности, против часовой стрелки.

Проверка оптрона

Как можно проверить оптрон? Например так, как на следующей схеме:

Фототранзистор: принцип работы, как проверить

Схема проверки оптрона

В чем суть такой проверки? Наш фототранзистор, когда на него попадет свет от внутреннего светодиода, сразу перейдет в открытое состояние, и его сопротивление резко уменьшится, с очень большого сопротивления, до 40-60 Ом.

Так как мне эти микросхемы, оптроны требуется тестировать регулярно, решил вспомнить о том, что я ведь не только электронщик, но еще и радиолюбитель), и собрать какой нибудь пробничек, для быстрой проверки оптопары.

Пробежался по схемам в инете, и нашел следующее:

Фототранзистор: принцип работы, как проверить

Схема конечно очень простая, красный светодиод сигнализирует о работоспособности внутреннего светодиода, а зеленый, о целости фототранзистора. Поиск готовых устройств собираемых радиолюбителями, выдал фото простых пробничков, подобных этому:

Фототранзистор: принцип работы, как проверить

Устройство для проверки оптопары с интернета

Это все конечно очень хорошо, но демонтировать каждый раз оптопару а после запаивать ее обратно — это же не наш метод :-). Требовалось устройство для удобной и быстрой проверки работоспособности оптопары, обязательно без выпаивания, плюс замахнулся при этом еще и на звуковую, и визуальную индикацию :-).

Фототранзистор: принцип работы, как проверить

Звуковой пробник — схема

У меня был собран ранее простой звуковой пробничек по этой схеме, со звуковой и визуальной индикацией, с питанием от полутора вольт, батарейки АА.

Фототранзистор: принцип работы, как проверить

Простой звуковой пробник

Решил, что это то что нужно, сразу готовый полуфабрикат), вскрыл корпус, ужаснулся своему полунавесному монтажу), времен первых лет, изучения мною радиодела. Тогда изготавливал плату, путем прорезания канавок в фольгированном текстолите, резаком. Просьба не пугаться), глядя на этот колхоз.

Фототранзистор: принцип работы, как проверить

Внутренности и детали

Решено было пойти, путем изготовления аналога, своего рода пинцета, для быстрой проверки оптрона, в одно касание. Были выпилены из текстолита две маленьких полоски, и посередине их, была проведа бороздка резаком.

Контактные пластины из текстолита

Затем был нужен сжимающий механизм, с пружинкой. В ход пошла старая гарнитура от телефона, вернее клипса, для крепления на одежду, от нее.

Прищепка от гарнитуры

Дело было за малым, подпаять провода. и закрепить пластинки на клипсе с помощью термоклея. Получилось снова колхозно, как без этого), но на удивление крепко.

Пинцет для измерения самодельный

Провода были взяты, от разъемов подключения к материнской плате, корпусных кнопок системного блока, и светодиодов индикации.

 Единственный нюанс, на схеме у меня на один из щупов от мультиметра, подключаемых к пробнику посажена земля, сделайте ее контакт, если будете повторять, обязательно напротив земли питания светодиода оптрона, во избежания очень быстрого разряда батареи, при замыкании плюса питания, на минус батареи. Схемку распиновки пинцета, рисовать думаю будет лишнее, все понятно и так без труда.

Окончательный вид пробника оптронов

Так выглядит готовое устройство, причем сохранившее свой функционал звукового пробника, путем подключения через стандартные гнезда, щупов от мультиметра. Первые испытания показали, что 40 ом в открытом состоянии фототранзистора между выводами эмиттер – коллектор, для такого пробника, несколько многовато.

Звук пробника был приглушен, и светодиод светил не очень ярко. Хотя для индикации работоспособности оптрона, этого было уже достаточно. Но ведь мы к полумерам не привыкли). В свое время собирал расширенный вариант, схемы этого звукового пробника, где обеспечено измерение при сопротивлении между щупами, до 650 Ом.

Схему расширенного варианта привожу ниже:

Схема 2 — звуковой пробник

Данная схема отличается от оригинала, только наличием еще одного транзистора, и резистора в его базовой цепи. Печатную плату расширенной версии пробника, привел на рисунке ниже, она будут прикреплена в архиве.

Печатная плата на звуковой пробник

Данный пробник показал себя при проверке, достаточно удобным в работе, даже в таком, как есть варианте, после проведения на днях апгрейда, недостаток с тихим звучанием, и тусклым свечением светодиода, наверняка будет устранен. Всем удачных ремонтов! AKV.

   Форум

   Обсудить статью Пробник для проверки оптопар

Источник: https://radioskot.ru/publ/remont/probnik_dlja_proverki_optopar/4-1-0-1158

Как проверить фотореле на работоспособность

Сегодня рассмотрим, что такое фотореле. Подключить его проще простого, попытаемся дать пару советов. Посмотрим, как подключить фотореле, и что способно помешать его правильной работе.

Устройство и принцип действия фотореле

Человеку, разбирающемуся в схемах, после прочтения подраздела объяснять, как подключается фотореле ФР 601, уже не потребуется. Основные конструктивные части любого уличного фотореле, призванного контролировать уровень придомовой освещённости:

    Блок питания стоит прямо на входе. Указанная деталь придаёт фотореле необходимый вес. Датчик величиной с пятикопеечную монетку. Внутри блок питания фотореле не импульсный, а простейший. Под кожухом фотореле притаился солидных размеров трансформатор. Он переваривает напряжение от сети 220 В в форму, пригодную для питания фотодиода. Все устройство — блок питания для небольшого куска полупроводника размером с ноготок. Теперь понятно, зачем в фотореле нулевой провод: для питания первичной обмотки трансформатора. Это не единственная причина. Трансформатор фотореле, понятное дело, понижающий. С вторичной обмотки снимается напряжение, необходимое для питания фотодиода.

Фототранзистор: принцип работы, как проверить

Представлена вся схема. Добавим, что «земля» иногда нужна для правильной работы силовых элементов (задать рабочую точку нелинейного элемента).

Как ведётся подключение фотореле

Собственно, на картинке приведён пример, как подключать фотореле. Добавим, что, как правило, присутствует три провода, исходящие из корпуса. Назначение:

Фототранзистор: принцип работы, как проверить

Схема подключение реле

  1. Красный – фаза, уходящая на лампы освещения.
  2. Чёрный – фаза, приходящая от источника питания 220 В.
  3. Зелёный – земля.

Набор проводов фотореле может состоять и из прочих цветов. К примеру, вместо красного коричневый. Придётся почитать инструкцию на фотореле, допустимо попробовать незамысловатый метод: первичная обмотка трансформатора должна без сложностей звониться.

Реле может быть нормально разомкнутым, не пропускать ток. Сопротивление первичной обмотки не будет нулевым. Даже для постоянного тока мультиметра. Проведите измерение, и удастся отыскать землю.

Что касается фазы, если подать напряжение не туда (реле нормально замкнутое), хватает прикрывания прибор крышкой, чтобы цепь перешла в непонятное состояние. Рекомендуем в случае отсутствия инструкции просто снять крышку и посмотреть, куда идут провода.

Фазный делится надвое: первая ветвь пойдёт минуя ключ (реле, тиристор) на выход, вторая послужит для питания трансформатора. Питание подайте на конец, не отделенный от трансформатора ключом. Оставшийся провод — земля.

Посмотрите на рисунок, где авторы изобразили схему подключения фотореле. Все они однотипны, смело берите на вооружение. Выдержан цвет проводов из нашего примера. На практике гамма порой отличается, но по описанию становится понятно назначение.

Как выбрать фотореле

Обратите внимание, что у каждого приспособления выделяется область применимости. Для нашего случая это пропускная мощность. Фотореле не способно пропустить бесконечно большой ток, расплавится силовой элемент.

Важно понять, что иногда исключительно ключом не обойдёшься. Оригинальный выход – замена разрядных и обычных ламп на светодиодные либо энергосберегающие.

Подобные приборы потребляют энергии на порядок меньше, а значит, допустимо поставить количеством в 10 раз больше.

Срок службы светодиодных ламп может достигать 30000 часов. Магазин Чип&Дип даёт два года гарантии на продаваемый товар указанного толка. Нитевидные светодиоды сделаны для имитации обычных ламп накала, способны светить годами. При этом не боятся тряски, экономичны и сравнительно дешёвые. Соседи не поймут, что произошла замена.

Когда формируется схема подключения фотореле для уличного освещения, требуется продумать вопросы питания и мощности. Согласитесь, неудобно ставить ряд управляющих ключей. Они портят внешний вид экстерьера, не несут смысловой нагрузки, разве что выделить несколько контуров, предназначенных включаться и выключаться в разное время. Любой собственник частного домовладения знает факты:

  1. Дом в период разработки конструкции обзаводится электрическим проектом. Нельзя брать и что-то менять без сонма согласовательных работ. Следовательно, чем меньше стоит фотореле и влияет на схему, тем лучше. Тогда смена лампочек накала или разрядных на светодиодные или энергосберегающие смотрится уместно. Главное, что пропускаемый ток уменьшится, удастся сэкономить на реле, а также обойтись единственным на все поместье.
  2. Важной частью считается квота энергии. По законам РФ собственник имеет право на определённую долю энергии. Это называется квотой. Если свою долю не выбрать – что учитывается уже в проекте электрификации – потом за положенное придётся (!) платить. Собственную квоту лучше знать заранее. А превышать нельзя опасаясь прогрессирующего штрафа. Следовательно, выгодно забрать ровно столько, сколько даёт закон. Сбережение энергии за счёт внешнего освещения позволит чуть больше приборов разместить внутри здания.
Читайте также:  Датчики влажности - принцип работы, устройство, виды, применение

  Как увеличить время прокрутки стартера starline a91

Фототранзистор: принцип работы, как проверить

Проверка действия фотореле

Обратите внимание при установке фотореле, что в место будущей дислокации должен беспрепятственно проникать свет. Для подстройки уровня включения с нижней стороны прибора устанавливается специальный винт.

Регулируя его положение, возможно беспрепятственно настроить прибор на нужное время. Разумеется, многое зависит от погоды. Если утро пасмурное, свет проработает дольше.

И наоборот – когда рассвет солнечный, освещение выключится раньше.

Если это не нравится или просто не требуется, потребуется последовательно включить реле времени (таймер).

Современные версии отличаются возможностью программировать расписание по дням недели и выбирать варианты. Иногда выручит датчик движения.

Это полезно в темных галереях, где неэффективно ставить выключатели — сложно найти. Датчик определит, что приближается человек, и выполнит нужную работу.

Фототранзистор: принцип работы, как проверить

Схема сбора реле

Как сделать и подключить фотореле самостоятельно

Ввиду простоты конструкции люди часто хотят сделать фотореле самостоятельно. Речь сейчас идёт о садоводах (для контроля освещения), автолюбителях и прочих лицах, которым не требуются проект и согласование.

Принцип работы фотореле уже описали выше, просто посмотрите на схему. Там приведено реле на 220 В, несложно найти в микроволновой печи или мультиварке.

Выбирайте любое, лишь бы напряжения +12 В хватило для срабатывания.

Транзисторы позаимствованы незамысловатые и включены по схеме с общим эмиттером. Это ключи, отпираемые положительным напряжением.

Оно не способно поступить на первый каскад (находящийся слева), пока на фотодиод КДФ101А не упадёт достаточный поток фотонов света. Потом ключ просто передаёт потенциал на базу второго в каскаде ключа, подключающего схемную землю на реле.

Таким образом, цепь замыкается. А на управляющий электрод силового реле начинает поступать в полной мере 12 В.

Диод, соединённый параллельно с реле, служит для обратного размыкания, когда транзисторы закроются. Особое внимание обратите на экспериментально подбираемый номинал резистора, определяющего режимы работы обоих транзисторов.

Требуется просто по вольт-амперной характеристике выбрать правильную точку. Потом посчитать, как должно делиться напряжение. Обратите внимание, питание берётся прямо через реле.

Если принципиальная схема не позволяет так сделать, придётся провести провод питания прямо на катод фотодиода, возможно применение другого реле. Иначе схема не заработает.

  Замена колес на авто

Кстати, фотореле возможно проверить за считаные минуты при помощи обычного мультиметра. Схема подключения фотореле уличного освещения аналогична описанной выше. А напряжение питания +12 В можно взять из любого блока питания, оказавшегося поблизости (или аккумулятора).

цифровая электроника вычислительная техника встраиваемые системы

Как проверить фотоэлемент

Фотоэлементы – это детекторы, работа которых зависят от света. Когда они далеко от света, они обладают высоким сопротивлением. При помещении вблизи света их сопротивление падает.

Когда они помещаются внутри цепей, они позволяют протекать определенному количеству тока на основе потребляемого количества света, которое их освещает, и поэтому называются фоторезисторами.

Они также называются светозависимыми резисторами или LDR.

Фототранзистор: принцип работы, как проверить

Фотоэлементы изготавливаются из полупроводников, чаще всего сульфида кадмия. Те, которые сделаны из сульфида свинца, используются для обнаружения инфракрасного излучения.

Чтобы проверить фотоэлемент, используйте цифровой мультиметр. Включите мультиметр и настройте его на измерение сопротивления. Сопротивление обычно указывается греческой буквой омега. Если мультиметр не авторегулируется, поверните ручку на очень высокий уровень, например мегаом.

Поместите красный щуп мультиметра на один вывод фотоэлемента, а черный – на другой. Направление не имеет значения. Возможно, вам понадобится использовать зажимы типа крокодил, чтобы убедиться, что щупы не проскальзывают с проводов фотоэлемента.

Фототранзистор: принцип работы, как проверить

Защитите фотоэлемент, чтобы на него не попадал свет. Сделайте это, положив руку на него или, например, накрыв его. Запишите значение сопротивление. Оно должно быть очень высоким. Вам может потребоваться изменить настройку измерения сопротивления вверх или вниз, чтобы получить показания.

Откройте фотоэлемент, чтобы свет падал на него. Отрегулируйте ручку на мультиметре, понизив ее настройку измерения сопротивления. Через несколько секунд сопротивление должно считывать сотни Ом.

Повторите эксперимент, поставив фотоэлемент рядом с различными источниками света, в том числе испытайте его при солнечном свете, лунном свете или в частично затемненной комнате. Каждый раз записывайте сопротивление.

Фотоэлементы могут потребовать от нескольких секунд до нескольких минут, чтобы отрегулировать их, когда они удалены от источника света, а затем помещены в темноту.

Как и раньше, вам может потребоваться изменить настройки измерения сопротивления, чтобы получить правильные показания.

  Ваз 2106 регулировка зажигания угол опережения

ФР-601- полный аналог, а скорее, просто наклейка на китайское дешевое фотореле LXP. ФР-602 -более мощное, но тот же вариант LXP! Это реле собрано на двух транзисторах. Гистерезис около 2 часов. (это разница включения вечером и выключения утром).

Проще говоря, если фотореле включается вечером как надо, то утром уже будет светить солнце, а ваша лампочка будет все еще гореть. Простейшая схема фотореле ФР-601 и им подобных (см. картинки ниже) не позволяет устранить этот существенный недостаток.Гистерезис — по гречески «запаздывание».

Однако, нормальное фотореле имеет гистерезис близкий к нулю, европейские некоторые модели «нулевой», а наши модели и вовсе отрицательный!

Информация к размышлению:

Стоимость 1 кВт в час стоит ну пусть 3,6 руб. (где то и выше 4 рублей). Стоимость «колпачка» ФР-601 — 120-150 рублей!

  • Вы управляете магнитным пускателем, который коммутирует трехфазную сеть по 5 кВт в каждой, суммарно 15 кВт, включается огромная световая неоновая реклама!
  • Теперь прикинем за что Вы платите деньги:
  • Так как гистерезис у реле значительный — то освещение горит на 2 часа больше чем у современного с нулевым гистерезисом.

В день Вы переплачиваете 108 рублей, в месяц 3240 рублей, в год более 38.000 рублей.

Соберем потраченную сумму Вами за год с ФР-601 = 38000 + стоимость его 120 руб Итого за год Вы владелец вывески, заплатите 38.568 кровных рублей!

На покупке цифрового реле ФР-10А уйдет ровно 550 рублей, а если у честь что у него обратный гистерезис (и еще экономия в ночном режиме с часу ночи до пяти утра, если ночью никому не нужна наружная реклама) то сумма Ваших платежей будет уменьшаться, а не возрастать!

А теперь, вспомните детскую игру «Найдите 5 отличий» и попробуйте отличить ФР-601 от фотореле Feron, например, или от Uniel))

Фототранзистор: принцип работы, как проверить
Фототранзистор: принцип работы, как проверить
Фототранзистор: принцип работы, как проверить
Фототранзистор: принцип работы, как проверить

Все эти фотореле сделаны в Китае и отличаются ТОЛЬКО названием и цветом упаковки.

1041001016 Светочувствительное реле (аналоговое) ФБ-11М (контактное 25А/IP56) НТК Эл-ка нет аналогов
1041000450 Светочувствительное реле (цифровое) ФБ-3М (бесконтактное 10А/IP55) НТК Эл-ка аналог фотореле фб-3 (композит)
1041004172 Светочувствительное реле (цифровое) ФБ-4М (контактное 3х30А/IP56) НТК Эл-ка похожее фотореле ТФ-3 (композит) , похожее на одну фазу LUNA 112 , TWA-2(ABB)
1041004191 Фотореле (аналоговое) ФР-7А (контактное 7А/IP40) Гермосенсор 2 метра, на дин-рейку 2 мод. (НТК Э-ка) анналоги ФР-7(реле и автоматика) фотореле DLS (Болгария), ФР-7Э, РФС-11, ФР-675, ФР-2903, ФР-1-3, ФР-94-3, ФР-7Н, ФР-7Е, ФР-7К,
1041004192 Фотореле (аналоговое) ФР-10 (контактное 10А/IP40) Гермосенсор, на дин-рейку 2 мод. (НТК Эл-ка) аналог по схемотехнике ФР-1М, ФР-2 УЗ, ФР-75, ФР-94, ФР-95, ФР-601, ФР-94-7, ФР-94-10, ФР-94-II ,
1041004193 Фотореле (аналоговое) ФР-16А (контактное 16А/IP40) Гермосенсор 2 метра, на дин-рейку 1 мод.(НТК Э-ка аналоги ФР-М01-1-15 , ФР-М02 «МЕАНДР» ,ФР-9М(реле и автоматика),SOU-1/UNI 16А(ELKO EP Чехия) , AZ-112 220В 16А(Евроавтоматика ФиФ Беларусь) ,TW1 16А (ABB) , УТФР-1РМ (Энергис Киров) , FR-135, ФР-7М,

(812) 912-03-29, htk@ya.ru, fotoblok

Источник: https://o-ladagranta.ru/kak-proverit-fotorele-na-rabotosposobnost/

Проверка транзистора – инструкция для различных типов и правила подключения мультиметра (85 фото)

В процессе конструирования и ремонта электроники и радиотехники частенько возникает необходимость проверять работоспособность схемы и различных ее элементов. Многое зависит от того, в каком состоянии находится элемент, нужно ли его заменить.

Фототранзистор: принцип работы, как проверить

Как сделать это с транзистором на плате, лишний раз не выпаивая его – задачка проста и сложна одновременно. Важно понимать, как правильно это сделать. С чего начать. Но – обо все по-порядку.

Фототранзистор: принцип работы, как проверить

Особенности устройства

По своим конструктивным особенностям все транзисторы бывают:

  • Биполярными (БТ);
  • Полевыми или униполярными (ПТ);
  • Составными (СТ).

Фототранзистор: принцип работы, как проверить

Перед тем как приступить к проверке целостности детали цифровым мультиметром важно понять, что из себя представляет БТ. Это – трехслойный полупроводник. Грубо говоря, это 2 диода, соединенные между собой. Изображая его таким образом, будет легче понять схему его проверки на самой плате без выпайки.

Фототранзистор: принцип работы, как проверить Фототранзистор: принцип работы, как проверить Фототранзистор: принцип работы, как проверить Фототранзистор: принцип работы, как проверить Фототранзистор: принцип работы, как проверить Фототранзистор: принцип работы, как проверить

  • По проводимости, биполярные полупроводники бывают двух видов:
  • Фототранзистор: принцип работы, как проверить

Их также легче всего представить в виде диодов, фотографии которых часто размещают, чтобы пояснить важность понимания структуры и принципа его действия. Ток на выходе возникает при участии дырок и электронов – двух разнополярных носителей, позволяющих им управлять.

Контакты, задействованные в полупроводнике, называют:

  • базой;
  • эмиттером;
  • коллектором.

К базе подключается средний слой. К эмиттеру и коллектору – крайние. Направление тока маркируют стрелкой. Она расположена возле эмиттера.

Проверка транзистора – это выявление наличия сопротивления между его переходами под обратным и прямым напряжением. Когда его нет, значит деталь вышла из строя и непригодна к дальнейшему применению.

  1. В ПТ электрическое поле направлено перпендикулярно текущему току. Их контакты называются так:
  2. Также в их конструкции есть дополнительный (проводящий слой) для протекания по нему электротока.

ПТ бывают в различных модификациях. С «п» или «р» каналами, горизонтальным и вертикальным расположением, приповерхностной и объемной конфигурацией.

Проверяем БТ

Перед началом тестов важно убедиться что батарея мультиметра не разряжена и устройство работает нормально. Выставляем прибор в режим измерения сопротивления или полупроводников (должна появиться на дисплее единичка) и соединяем концы красного и черного щупов. Когда мультиметр исправен, он издаст писк, и на дисплее появится цифра «0».

Читайте также:  Боимся короткого замыкания, затопили кипятком. что нам делать?

  • Проверить биполярный транзистор можно следуя простой инструкции:

Правильно соединяем выходы БТ и мультиметра. Нам важно определиться в том, как точно идентифицировать выходы, относящиеся к эмиттеру, базе и коллектору, выявить пары.

Ставим черный щуп на первый электрод. Будем считать его базой. Красным щупом касаемся двух оставшихся контактов поочередно. Переход «эмиттер-база» покажет большее падение сопротивления, чем у «коллектор-база».

Потом меняем щупы местами. Красный щуп ставим на выявленную базу и продолжаем измерения.

  1. Когда БТ исправен, одна полярность должна показывать определенное сопротивление (не равное нулю), другая – бесконечное (на дисплее «1»).
  2. В конечном счете, нам нужно проверить целостность переходом между следующими парами:
  • База-коллектор:
  • Эмиттер-коллектор;
  • База-эмиттер.

Многие ищут альтернативу мультиметру, проверяют транзистор с помощью ламп под нагрузкой и прочего, на плате, не выпаивая его. После того как он окончательно сгорит, они понимают, что были неправы!

Проверяем ПТ

От функционирования таких электронных устройств зависит работа видеоаппаратуры, мониторов, блоков питания. При их проверке могут возникнуть проблемы, когда хотят их проверить, не выпаивая из микросхемы.

Обычно используются довольно мощные полевые транзисторы, склонные к накоплению пассивного статического заряда. При проверке их нужно соблюдать осторожность, проводить ее с использованием антистатического браслета.

Нужно точно знать расположение основных выходов – истока, стока и затвора, обращать внимание на маркировку, чтобы проверить этот вид транзистора своими руками.

Об исправности устройства можно судить, когда мультиметр показывает бесконечно большое сопротивление между парами контактов. Проверка его осуществляется по той же схеме, что и БТ.

Переход сток-исток может иметь диод-перемычку. Важно правильно его прозвонить, чтобы убедиться что транзистор исправен. Меняем щупы местами, смотрим на показания мультимера.

  • Перед проверкой рекомендуется разрядить все емкости переходов, чтобы получить достоверные результаты.

Составные транзисторы проверяются так же как и биполярные. У них такие же выходы контактов для тестирования. Они предназначены для работы с большими токовыми нагрузками. Их можно встретить в усилителях мощности и стабилизаторах.

Наличие в собственной схеме нескольких биполярных транзисторов позволяет им значительно поднять коэффициент усиления тока.

Проверка не вызовет сложности при наличии исправного мультиметра. Важно убедиться, что батарея – не разряжена, а провода щупов – не порваны.От того, как будет проверен элемент, будет зависеть дальнейшая работа всего устройства.

Фото процесса проверки транзистора

Источник: https://electrikmaster.ru/proverka-tranzistora/

Оптопара PC817 принцип работы и очень простая проверка. — schip.com.ua

Описание, характеристики , Datasheet  и методы проверки оптронов на примере PC817.

В продолжение темы «Популярные радиодетали при ремонтах импульсных блоков питания» разберем еще одну деталь- оптопара (оптрон ) PC817. Он состоит из светодиода и фототранзистора.

Между собой электрически никак не связанны, благодаря чему на основе PC817 можно реализовать гальваническую развязку двух частей схемы — например с высоким напряжением и с низким. Открытие фототранзистора зависит от освещенности светодиодом.

Как это происходит более подробно я разберу в следующей статье где в экспериментах подавая сигналы с генератора и анализируя его при помощи осциллографа можно понять более точную картину работы оптопары.

Еще в других статьях я расскажу о нестандартном использовании оптрона первая в роли реле -RS триггера с фиксацией состояний, а во второй генератор периодических сигналов.  И используя эти схемные решения соберу очень простой тестер оптопар. Которому не не нужны никакие дорогие и редкие приборы, а всего лишь несколько дешевых радиодеталей.

Деталь не редкая и не дорогая. Но от нее зависит очень многое. Она используется практически в каждом ходовом (я не имею ввиду каком нибудь эксклюзивном) импульсном БЛОКЕ ПИТАНИЯ и выполняет роль обратной связи и чаще всего в связке тоже с очень популярной радиодеталью TL431 Описание и проверка здесь

Для тех читателей, кому легче информацию воспринимать на слух, советуем посмотреть видео в самом низу страницы.

Фототранзистор: принцип работы, как проверить

Оптопара ( Оптрон ) PC817

Краткие характеристики:

Максимальное напряжение изоляции вход-выход 5000 В
50 мА
Максимальная рассеиваемая на коллекторе мощность 150 мВт
Максимальная пропускаемая частота 80 кГц
Диапазон рабочих температур -30°C..+100°C
Тип корпуса DIP-4

Корпус компактный:

  • шаг выводов – 2,54 мм;
  • между рядами – 7,62 мм.

Производитель PC817 – Sharp, встречаются другие производители электронных компонентов выпускают аналоги- например:

  • Siemens – SFH618
  • Toshiba – TLP521-1
  • NEC – PC2501-1
  • LITEON – LTV817
  • Cosmo – KP1010

Кроме одинарного оптрона PC817 выпускаются и другие варианты:

  • PC827 — сдвоенный;
  • PC837 – строенный;
  • PC847 – счетверенный.

Фототранзистор: принцип работы, как проверить

Даташит на оптопару PC817 rus

Проверка оптопары

Для быстрой проверки оптопары я провел несколько тестовых экспериментов. Сначала на макетной плате.

Фототранзистор: принцип работы, как проверить

Вариант на макетной плате

В результате удалось получить очень простую схему для проверки PC817 и других похожих оптронов.

Фототранзистор: принцип работы, как проверить

Первый вариант схемы

Первый вариант я забраковал по той причине что он инвертировал маркировку транзистора с n-p-n  на  p-n-p

Фототранзистор: принцип работы, как проверить

Поэтому чтобы не возникало путаницы я изменил схему на следующую ;

Фототранзистор: принцип работы, как проверить

Второй вариант схемы

Фототранзистор: принцип работы, как проверить

  • Второй вариант работал правильно но неудобно было распаять стандартную панельку
  • SCS- 8
  • под микросхему

Фототранзистор: принцип работы, как проверить

Панелька SCS- 8

Фототранзистор: принцип работы, как проверить

Третий вариант схемы

Самый удачный

Фототранзистор: принцип работы, как проверить

Uf — напряжение на светодиоде при котором начинает открываться фототранзистор.

в моем варианте Uf = 1.12 Вольт.

В результате получилась такая очень простая конструкция:

Вид сверху

Вид снизу

Как видно из фото деталь развернута не по ключу.

Используя которую можно очень быстро проверить деталь. За свою практику ремонтов конечно не часто , но я сталкивался с неработающими оптопарами и раньше мне приходилось заморачиваться  над проверкой детали когда иногда бывало заходил в тупик во время сложного ремонта.

Конечный вариант — все очень просто.

Источник: http://schip.com.ua/pc817/

Фоторезисторы, фотодиоды, фототранзисторы. Общие понятия

Фотоэлектрическими приборами называют электронные приборы, способные изменять те или иные свои  характеристики под действием света. Значение этих устройств практически во всех областях радиотехники и электроники переоценить сложно, поэтому сегодняшнюю беседу посвятим им.

Фототранзистор: принцип работы, как проверитьФоторезисторы. В принципе, название прибора говорит само за себя — они под действием света изменяют свое сопротивление. Обычно затемненный резистор имеет сопротивление порядка 1 – 200 МОм, при освещении эта цифра уменьшается на 2-3 порядка. Главное преимущество фоторезистора – практически линейная зависимость сопротивления от освещенности, поэтому их удобно использовать в аналоговых приборах – датчиках и измерителях освещенности.

Недостатки же фоторезисторов следующие: достаточно высокие сопротивления (как темновое, так и световое), с которыми не всегда удобно работать. К примеру, ТТЛ микросхемы цифровой техники напрямую не смогут управляться таким резистором – слишком «грубые» их входы не смогут работать с делителями, собранными на сопротивлениях большого номинала:

Фототранзистор: принцип работы, как проверить

На это способны только микросхемы КМОП, собранные на полевых транзисторах. Следующий недостаток – достаточно низкая (по сравнению, конечно, с другими типами фотоэлементов) чувствительность.

И главный недостаток, который делает применение фоторезисторов в цифровой технике нецелесообразным – низкая скорость реакции на свет.

При частоте световых импульсов выше килогерца форма электрического сигнала на фоторезисторе неудовлетворительна, а если увеличить частоту еще, то резистор вообще перестанет видеть, что свет «мигает».

Если вспомнить, на каких частотах работает сегодняшняя цифровая техника, то будет очевидно, что фоторезистор в качестве «глаз» для цифрового устройства – плохой вариант. Фоторезистор – прибор неполярный, а потому следить за тем, какой вывод куда подключать, надобности нет.

Фототранзистор: принцип работы, как проверитьФотодиоды. Этот полупроводниковый прибор по своим характеристикам очень напоминает диод обычный, поэтому следить за полярностью его включения придется.

При обратном включении (на катод подается «плюс» источника питания) фотодиод ведет себя так же, как фоторезистор, но в отличие от последнего имеет гораздо более низкое световое сопротивление и в состоянии выдерживать приличный ток. Это позволяет управлять мощными транзисторами и ТТЛ микросхемами напрямую, без дополнительных усилителей:

Фототранзистор: принцип работы, как проверить

Еще одно достоинство фотодиода – достаточно высокая скорость реакции, благодаря чему эти приборы широко используются для передачи цифровой информации. Компьютерная ИК-связь, пульты ДУ для радио – и телеаппаратуры – все это фотодиоды.

По диапазону чувствительности фотодиоды различают на инфракрасные и приборы видимого излучения.

Первые «видят» в основном ИК-излучение и мало чувствительны к видимому участку излучения, вторые наоборот – хорошо видят тот свет, который видит и наш глаз, но «слеповаты» в ИК-диапазоне.

И еще одно интересное свойство фотодиода – при прямом включении он способен работать как генератор. Если осветить фотодиод, то на его выводах появится напряжение. Его можно усилить, если прибор работает как датчик света, а можно использовать и для питания аппаратуры, соединив множество светодиодов в солнечную батарею.

Фототранзистор: принцип работы, как проверитьФототранзистор. По сути это обычный транзистор, но без крышки в буквальном смысле. Крышка, закрывающая кристалл прибора, конечно, есть, но она выполнена из прозрачного материала и видимый свет может попадать на кристалл. Для чего? Прежде всего, вспомним, как работает биполярный транзистор.

Подавая на базу некоторое напряжение, можно управлять сопротивлением перехода эмиттер-коллектор. Но оказывается, сопротивлением перехода можно управлять и обычным светом.

Итак, фототранзистор – это обычный транзистор, который имеет еще одну, дополнительную «базу» – световую. Освещаем – открываем транзистор.

В таком включении вывод базы фототранзистора можно вообще не использовать – его роль выполняет свет.

  • Фототранзистор: принцип работы, как проверить
  • Но, подавая на базу то или иное напряжение смещения, можно изменять чувствительность фототранзистора (специалисты обычно говорят «сдвинуть,сместить его рабочую точку»), приоткрывая его в той или иной степени, а значит регулировать параметры всей схемы:
  • Фототранзистор: принцип работы, как проверить

Источник: http://begin.esxema.ru/?p=698

Фототранзистор. Принцип работы и схема включения

Фототранзистор представляет собой твердотельное полупроводниковое устройство с внутренним усилением, которое используются для обеспечения аналоговых или цифровых сигналов.

Читайте также:  Правда ли, что нагрузка автоматов, соединенных гребенкой, бегает по всей гребенке?

Фототранзисторы используются практически во всех электронных устройствах, функционирование которых, так или иначе, зависит от света, например, детекторы дыма, лазерные радары, системы дистанционного управления.

Фототранзисторы способны реагировать не только на обычное освещение, но и на инфракрасное и ультрафиолетовое излучение. Фототранзисторы более чувствительные и создают больший ток по сравнению с фотодиодами.

Конструкция фототранзистора

Как известно, самым распространенным видом транзистора является биполярный транзистор. Фототранзисторы, как правило, биполярные устройства NPN типа.

Фототранзистор: принцип работы, как проверить

Несмотря на то, что и обычные биполярные транзисторы достаточно чувствительные к свету, фототранзисторы дополнительно оптимизированы для более четкой работы с источником света. Они имеют большую зону базы и коллектора по сравнению с обычными транзисторами. Как правило, они имеют непрозрачный темный корпус с прозрачным окошком для света.

Большинство фототранзисторов производят из полупроводникового монокристалла (кремний, германий), хотя встречаются фототранзисторы, построенные и на основе сложных типов полупроводниковых материалов, например, арсенид галлия.

Принцип работы фототранзистора

Обычный транзистор состоит из коллектора, эмиттера и базы. В работе фототранзистора, как правило, вывод базы остается отключенным, так как свет генерирует электрический сигнал, позволяющий току протекать через фототранзистор.

При отключенной базе, коллекторный переход фототранзистора смещен в обратном, а эмиттерный переход — в прямом направлении. Фототранзистор остается неактивным до тех пор, пока свет не попадает на базу. Свет активирует фототранзистор, образуя электроны и дырки проводимости — носители заряда, в результате чего через коллектор — эмиттер протекает электрический ток.

Усиление фототранзистора

Диапазон работы фототранзистора напрямую зависит от интенсивности его освещения, поскольку от этого зависит положительный потенциал базы.

Базовый ток от падающих фотонов усиливается с коэффициентом усиления транзистора, который варьируется от нескольких сотен до нескольких тысяч единиц. Следует отметить, что фототранзистор с коэффициентом усиления от 50 до 100 более чувствителен, чем фотодиод.

Дополнительное усиление сигнала может быть обеспечено с помощью фототранзистора Дарлингтона. Фототранзистор Дарлингтона представляет собой фототранзистор, выход которого (эмиттер) соединен с базой второго биполярного транзистора. Схематическое изображение фототранзистора Дарлингтона:

Фототранзистор: принцип работы, как проверить

Это позволяет обеспечить высокую чувствительность при низких уровнях освещения, так как это дает фактическое усиление равное усилению двумя транзисторами. Два каскада усиления может образовать коэффициент усиления до 100 000 . Однако необходимо учесть, что фототранзистор Дарлингтона имеет более медленную реакцию, чем обычный фототранзистор.

Основные схемы включения фототранзистора

Схема усилителя с общим эмиттером

В данном случае формируется выходной сигнал, который переходит из высокого состояния в низкое в момент освещения фототранзистора.

Фототранзистор: принцип работы, как проверить

Данная схема получается путем подключения резистора между источником питания и коллектором фототранзистора. Выходное напряжение снимается с коллектора.

Схема усилителя с общим коллектором

Усилитель с общим коллектором формирует выходной сигнал, который при освещении фототранзистора, переходит из низкого состояния в высокое состояние.

Фототранзистор: принцип работы, как проверить

Схема создается путем подключения резистора между эмиттером и минусом источника питания (земля). Выходной сигнал снимается с эмиттера.

В обоих случаях фототранзистор может быть использован в двух режимах, в активном режиме и в режиме переключения.

  • Работа в активном режиме означает, что фототранзистор генерирует выходной сигнал пропорциональный степени его освещенности. Когда количество света превышает определенный уровень, фототранзистор насыщается, и выходной сигнал уже не будет увеличиваться, даже при дальнейшем увеличении освещения. Этот режим работы фототранзистора полезен в устройствах, где необходимо различить для сравнения два порога освещенности.
  • Работа в режиме переключения означает, что фототранзистор в ответ на его освещение будет либо «выключен» (отсечка), либо включен (насыщенные). Этот режим полезен, когда необходимо получить цифровой выходной сигнал.

Изменяя сопротивление резистора нагрузки в цепи усилителя, можно выбрать один из двух режимов работы. Необходимое значение резистора может быть определено с помощью следующих уравнений:

  • Активный режим: Vcc> R х I
  • Переключатель режима: Vcc

Источник: http://www.joyta.ru/7452-fototranzistor-princip-raboty-i-sxema-vklyucheniya/

Фототранзисторы. Устройство и работа. Применение и особенности

Фототранзисторы являются твердотельными полупроводниками с внутренним усилением, применяемым для передачи цифровых и аналоговых сигналов. Этот прибор выполнен на основе обычного транзистора.

Аналогами фототранзисторов являются фотодиоды, которые уступают ему по многим свойствам, и не сочетаются с работой современных электронных приборов и радиоустройств.

Их принцип действия похож на работу фоторезистора.

Чувствительность фототранзистора гораздо выше, чем у фотодиода. Они нашли применение в различных устройствах, в которых применяется зависимость от светового потока. Такими устройствами являются лазерные радары, пульты дистанционного управления, датчики дыма и другие. Фототранзисторы могут реагировать как на обычное освещение, так и на ультрафиолетовое и инфракрасное излучение.

Устройство

Наиболее популярны биполярные фототранзисторы структуры n-p-n.

Ф-транзисторы имеют чувствительность к свету больше, чем простые биполярные, так как они оптимизированы для лучшего взаимодействия с лучами света. В их конструкции зона коллектора и базы имеет большую площадь. Корпус выполнен из темного непрозрачного материала, с окошком для пропускания света.

Большинство таких полупроводников изготавливают из монокристаллов германия и кремния. Существуют также фототранзисторы на основе сложных материалов.

Принцип действия

Транзистор включает в себя базу, коллектор и эмиттер. При функционировании фототранзистора база не включена в работу, так как свет создает электрический сигнал, который дает возможность протекать току по полупроводниковому переходу.

При нерабочей базе переход коллектора транзистора смещается в обратном направлении, а переход эмиттера в прямом направлении. Прибор остается без активности до тех пор, пока луч света не осветит его базу. Освещение активизирует полупроводник, при этом создавая пары дырок и электронов проводимости, то есть носители заряда. В итоге через коллектор и эмиттер проходит ток.

Свойство усиления

Фототранзисторы имеют рабочий диапазон, размер которого зависит от интенсивности падающего света, так как это связано с положительным потенциалом его базы.

Ток базы от падающего света подвергается усилению в сотни и тысячи раз. Дополнительное усиление тока обеспечивается особым транзистором Дарлингтона, который представляет собой полупроводник, эмиттер которого соединен с базой другого биполярного транзистора. На схеме изображен такой вид фототранзистора.

Это дает возможность создать повышенную чувствительность при слабом освещении, так как происходит двойное усиление двумя полупроводниками. Двумя транзисторами можно добиться усиления в сотни тысяч раз. Необходимо учитывать, что транзистор Дарлингтона медленнее реагирует на свет, в отличие от обычного фототранзистора.

Схемы подключения

Схема с общим эмиттером

По этой схеме создается сигнал выхода, переходящий от высокого состояния в низкое, при падении лучей света.

Эта схема выполнена с помощью подключения сопротивления между коллектором транзистора и источником питания. Напряжение выхода снимают с коллектора.

Схема с общим коллектором

Усилитель, подключенный с общим коллектором, создает сигнал выхода, переходящий от низкого состояния в высокое, при попадании света на полупроводник.

Эта схема образуется подключением сопротивления между отрицательным выводом питания и эмиттером. С эмиттера снимается выходной сигнал.

В обоих вариантах транзистор может работать в 2-х режимах:

  1. Активный режим.
  2. Режим переключения.

Активный режим

В этом режиме фототранзистор создает сигнал выхода, зависящий от интенсивности падающего света. Когда уровень освещенности превосходит определенную границу, то транзистор насыщается, и сигнал на выходе уже не будет повышаться, даже если увеличивать интенсивность лучей света. Такой режим действия рекомендуется для устройств с функцией сравнения двух порогов потока света.

Режим переключения

Действие полупроводника в этом режиме значит, что транзистор будет реагировать на подачу света выключением или включением. Такой режим необходим для устройств, в которых необходимо получение выходного сигнала в цифровом виде. Путем изменения значения резистора в схеме усилителя, можно подобрать один из режимов функционирования.

Для эксплуатации фототранзистора в качестве переключателя чаще всего применяют сопротивление более 5 кОм. Напряжение выхода повышенного уровня в переключающем режиме будет равно питающему напряжению. Напряжение выхода малого уровня должно равняться менее 0,8 В.

Проверка фототранзистора

Такой транзистор легко проверяется мультитестером, даже без наличия базы транзистора.

Если подключить мультитестер к участку эмиттер-коллектор, то его сопротивление при любой полярности будет большим, так как транзистор закрыт.

Если луч света попадает на чувствительный элемент, то измерительный прибор покажет низкое значение сопротивления, так как транзистор в этом случае открылся, благодаря свету, при правильной полярности питания.

Так ведет себя обычный транзистор, но он открывается сигналом электрического тока, а не лучом света. Кроме силы света, большую роль играет спектральный состав света.

Применение

  • Системы охраны (чаще применяются инфракрасные ф-транзисторы).
  • Фотореле.
  • Системы расчета данных и датчики уровней.
  • Автоматические системы коммутации осветительных приборов (также применяются инфракрасные ф-транзисторы).
  • Компьютерные управляющие логические системы.
  • Кодеры.

Преимущества

  • Выдают ток больше, чем фотодиоды.
  • Способны создать мгновенную высокую величину тока выхода.
  • Основное достоинство – способность создания повышенного напряжения, в отличие от фоторезисторов.
  • Невысокая стоимость.

Недостатки

Ф-транзисторы являются аналогом фотодиодов, однако имеют серьезные недостатки, которые создают условия для узкой специализации этого полупроводника.

  • Многие виды фототранзисторов изготавливают из силикона, поэтому они не могут работать с напряжением более 1 кВ.
  • Такие светочувствительные полупроводники имеют большую зависимость от перепадов напряжения питания в электрической цепи. В таких режимах фотодиод ведет себя гораздо надежнее.
  • Ф-транзисторы не сочетаются с работой в лампах, по причине малой скорости носителей заряда.

Обозначения на схемах

Управляемые световым потоком транзисторы, на схемах обозначаются как обычные транзисторы.

VТ1 и VТ2 – ф-транзисторы с базой, VТ3 – транзисторы без базы. Цоколевка изображена как у простых транзисторов.

Так же, как и другие приборы на основе полупроводников с переходом n-p-n, применяющиеся для преобразования светового потока, фототранзисторы можно назвать оптронами. Их на схемах изображают в виде светодиода в корпусе, или в виде оптронов со стрелками. Усилитель во многих схемах обозначается в виде базы и коллектора.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/fototranzistory/

Ссылка на основную публикацию
Adblock
detector