Онлайн калькулятор расчета реактивного сопротивления

В этой статье мы поведем речь о таких параметрах, как активное и реактивное сопротивление.

Активное сопротивление

И начнем мы статью не с реактивного сопротивления, как ни странно, а с простого и всеми нами любимого радиоэлемента  – резистора, который, как говорят, обладает активным сопротивлением.

Еще иногда его называют омическим.  Как нам говорит вики-словарь, “активный  – это деятельный, энергичный, проявляющий инициативу”. Активист готов всегда рвать и метать даже ночью.

Он готов ПОЛНОСТЬЮ выложиться и потратить всю энергию во благо общества.

Онлайн калькулятор расчета реактивного сопротивления

То же самое можно сказать и про другие нагрузки, обладающие активным сопротивлением. Это могут быть различные нагревательные элементы, типа тэнов, а также лампы накаливания.

Как смотреть силу тока в цепи через осциллограф

Чем же резистор отличается от  катушки индуктивности  и конденсатора? Понятное дело, что выполняемыми функциями, но этим все не ограничивается. Итак, давайте рассмотрим самую простую схемку во всей электронике:

  • Онлайн калькулятор расчета реактивного сопротивления
  • На схеме мы видим генератор частоты и резистор.
  • Давайте визуально посмотрим, что у нас творится в этой схеме. Для этого, как я уже сказал, нам понадобится генератор частоты
  • Онлайн калькулятор расчета реактивного сопротивления
  • А также цифровой осциллограф:
  • Онлайн калькулятор расчета реактивного сопротивления
  • С помощью него мы будем смотреть напряжение и  силу тока . 
  • Что?
  • Силу тока?

Но ведь осциллограф предназначен для того, чтобы рассматривать форму сигнала напряжения? Как же мы будем рассматривать форму сигнала силы тока? А все оказывается просто). Для этого достаточно вспомнить правило шунта.

  1. Кто не помнит –  напомню. Имеем обыкновенный резистор:
  2. Онлайн калькулятор расчета реактивного сопротивления
  3. Что будет, если через него прогнать электрический ток?
  4. Онлайн калькулятор расчета реактивного сопротивления
  5. На концах резистора у нас будет падение напряжения. То есть, если замерить с помощью мультиметра напряжение на его концах, мультиметр покажет какое-то значение в Вольтах
  6. Онлайн калькулятор расчета реактивного сопротивления

И теперь главный вопрос: от чего зависит падение напряжения на резисторе? В дело опять же вступает закон Ома для участка цепи: I=U/R. Отсюда U=IR. Мы видим зависимость от номинала самого резистора и от силы тока, текущей в данный момент в цепи.

Слышите? От СИЛЫ ТОКА! Так почему бы нам не воспользоваться таким замечательным свойством и не глянуть силу тока через падение напряжения на  самом резисторе? Ведь номинал резистора у нас постоянный и почти не изменяется с изменением силы тока 😉

В данном опыте нам не обязательно знать номинал силы тока в цепи. Мы будем просто смотреть, от чего зависит сила тока и изменяется ли вообще?

Поэтому,  наша схема примет вот такой вид:

Онлайн калькулятор расчета реактивного сопротивления

В этом случае шунтом будет являться резистор сопротивлением в 0,5 Ом. Почему именно 0,5 Ом? Да потому что он не будет сильно греться, так как обладает маленьким сопротивлением, а также  его номинал вполне достаточен, чтобы снять с него напряжение.

Осталось снять напряжение с генератора, а также со шунта с помощью осциллографа. Если вы не забыли, со шунта мы снимаем осциллограмму силы тока в цепи. Красная осциллограмма – это напряжение с генератора Uген , а желтая осциллограмма  – это напряжение с шунта Uш , в нашем случае  – сила тока.  Смотрим, что у нас получилось:

  • Частота 28 Герц:
  • Онлайн калькулятор расчета реактивного сопротивления
  • Частота 285 Герц:
  • Онлайн калькулятор расчета реактивного сопротивления
  • Частота 30 Килогерц:
  • Как вы видите, с ростом частоты сила тока у нас осталась такой же.
  • Давайте побалуемся формой сигнала:
  • Как мы видим, сила тока  полностью повторяет форму сигнала напряжения.
  • Итак, какие можно сделать выводы?
  • 1) Сила тока через активное (омическое) сопротивление имеет такую же форму, как и форма напряжения.

2) Сила тока и напряжение на активном сопротивлении совпадают по фазе, то есть куда напряжение, туда и ток. Они двигаются синфазно, то есть одновременно.

3) С ростом частоты ничего не меняется (если только на очень высоких частотах).

Конденсатор в цепи переменного тока

  1. Ну а теперь давайте вместо резистора поставим конденсатор.
  2. Смотрим осциллограммы:

Как вы видите, конденсатор обладает сопротивлением, так  как сила тока в цепи значительно уменьшилась. Но обратите внимание, что произошел сдвиг желтой осциллограммы, то бишь осциллограммы силы тока.

  • Вспоминаем алгебру старшие классы. Итак, полный период T – это 2П
  • Теперь давайте прикинем, какой сдвиг фаз у нас получился на графике:
  • Где-то примерно П/2 или 90 градусов.

Почему так произошло? Во всем виновато физическое свойство конденсатора. В самые первые доли секунд, конденсатор ведет себя как проводник с очень малым сопротивлением, поэтому сила тока в этот момент будет максимальна. В этом можно легко убедиться, если резко подать на конденсатор напряжение и в начальный момент времени посмотреть, что происходит с силой тока

Красная осциллограмма – это напряжение, которое мы подаем на конденсатор, а желтая – это сила тока в цепи конденсатора. По мере заряда конденсатора сила тока падает и достигает нуля при полном заряде конденсатора.

  1. К чему приведет дальнейшее увеличение частоты? Давайте посмотрим:
  2. 50 Герц.
  3. 100 Герц
  4. 200 Герц
  5. Как вы видите, с увеличением частоты, у нас сила тока в цепи с конденсатором возрастает.

Реактивное сопротивление конденсатора

Как мы увидели с прошлого опыта, с увеличением частоты растет сила тока! Кстати, у резистора не росла. То есть получается в данном случае из закона Ома, что сопротивление конденсатора зависит от частоты! Да, все так оно и есть. Но называется оно не просто сопротивлением, а реактивным сопротивлением и вычисляется по формуле:

  • где
  • Хс – реактивное сопротивление конденсатора, Ом
  • П – постоянная и приблизительно равна 3,14
  • F – частота, Гц
  • С – емкость конденсатора, Фарад

Катушка индуктивности в цепи переменного тока

  1. Ну а теперь давайте возьмем катушку индуктивности вместо конденсатора:
  2. Проводим все аналогичные операции, как и с конденсатором.

    Смотрим на осциллограммы в цепи с катушкой индуктивности:

  3. Если помните, вот такую осциллограмму мы получили в схеме с конденсатором:

Видите разницу? На катушке индуктивности ток отстает от напряжения на  90 градусов, на П/2, или, как еще говорят, на четверть периода (весь период у нас 2П или 360 градусов).

Так-так-так…. Давайте соберемся с мыслями. То есть в цепи с переменным синусоидальным током,  ток на конденсаторе опережает напряжение на 90 градусов, а на катушке индуктивности ток отстает от напряжения тоже на 90 градусов? Да, все верно.

Почему на катушке ток отстает от напряжения?

Не будем углубляться в различные физические процессы и формулы, просто сочтем за данность, что сила тока не может резко возрастать на катушке индуктивности. Для этого проведем простой опыт. Так же как и на конденсатор, мы резко подадим напряжение на катушку индуктивности, и посмотрим, что случилось с силой тока.

  • Как вы видите, при резкой подаче напряжения на катушку, сила тока не стремится также резко возрастать, а возрастает постепенно, если быть точнее, по экспоненте.
  • Давайте вспомним, как это было у конденсатора:
  • Все с точностью наоборот! Можно даже сказать, что катушка – это полная противоположность конденсатору 😉
  • Ну и напоследок давайте еще побалуемся частотой:
  • 240 Килогерц
  • 34 Килогерца
  • 17 Килогерц
  • 10 Килогерц
  • Вывод?
  • С уменьшением частоты сила тока через катушку увеличивается.

Реактивное сопротивление катушки индуктивности

  1. Из опыта выше мы можем сделать вывод, что сопротивление катушки зависит от частоты и вычисляется по формуле
  2. где
  3. ХL –  реактивное сопротивление катушки, Ом
  4. П – постоянная и приблизительно равна 3,14
  5. F – частота, Гц
  6. L – индуктивность, Генри

Почему не сгорает первичная обмотка трансформатора

Ну и теперь главный вопрос, который часто задают в личке: “Почему когда я меряю первичную обмотку трансформатора, у меня выдает от 10 Ом и больше в зависимости от трансформатора.

На трансформаторных сварочных аппаратах вообще пару Ом! Ведь первичная обмотка трансформатора цепляется к 220 Вольтам! Почему не сгорает обмотка, ведь сопротивление обмотки всего то десятки или сотни Ом, и может случится короткое замыкание!

А ведь и вправду, мощность равна как напряжение помноженное на ток P=IU. То есть через пару секунд от первичной обмотки трансформатора должен остаться уголек.

  • Дело все в том, что парные обмотки трансформатора представляют из себя катушку индуктивности с какой-то индуктивностью. Получается, что реальное сопротивление обмотки будет выражаться через формулу
  • поставьте сюда индуктивность, которая в трансформаторах составляет от единицы Генри и получим что-то типа от 300 и более Ом. Но это еще цветочки, ягодки впереди;-)
  • Для дальнейшего объяснения этого явления нам потребуется наша осциллограмма с катушки индуктивности:
  • Итак, давайте выделим на ней один период и разделим его на 4 части, то есть по 90 градусов каждая или П/2.

Мощность в цепи с реактивными радиоэлементами

Давайте начнем с такого понятия, как мощность. Если не забыли, мощность – это сила тока помноженное на напряжение, то есть P=IU. Итак, в первую четвертинку периода t1 у нас напряжение принимает положительные значения и сила тока тоже положительное. Плюс на плюс дает плюс. В эту четверть периода энергия поступает из источника в реактивное сопротивление.

Теперь давайте рассмотрим отрезок времени t2. Здесь ток со знаком “плюс”, а напряжение со знаком “минус”. В итоге плюс на минус дает минус. Получается мощность со знаком “минус”. А разве так бывает? Еще как бывает! В этот промежуток времени реактивный радиоэлемент отдает запасенную энергию обратно в источник напряжения. Для лучшего понимания давайте рассмотрим простой житейский пример.

Представим себе кузнеца за работой:

Не знаю, какое было у вас детство, но я когда был салабоном, брал свинец с аккумуляторов и плющил его в металлические пластинки. И что думаете? Свинец нагревался. Не так, чтобы прям обжигал, а был тепленький на ощупь. То есть моя энергия удара превращалась в тепло, можно даже сказать, в полезную энергию.

А что если взять пружину от стоек ВАЗа и ударять по ней?

С пружиной не станет НИ-ЧЕ-ГО! Она ведь не свинец. Но… заметьте вот такую вещь: как только мы начинаем “плющить” пружину кувалдой, у нас она начинает сжиматься. И вот она сжалась до упора и… выстрелила вверх, подхватив с собой тяжелую кувалду, которая только что пыталась ее расплющить.

То есть в данном случае энергия вернулась обратно в источник энергии, то есть обратно  к кузнецу. Он вроде как и пытался расплющить пружину, но пружина вернула энергию обратно своим разжатием. То есть кузнецу не надо уже было подымать тяжелый молот, так как за него это уже сделала пружина.

Разжатие пружины и возврат ею энергии обратно – это и есть отрицательная мощность. В этом случае энергия возвращается обратно в источник. Хорошо ли это или плохо – это уже другая история для полноценной статьи.

В третий промежуток времени  t3 и ток и напряжение у нас со знаком “минус”. Минус на минус – это плюс. То есть реактивный элемент снова поглощает энергию, ну а на t4, снова ее отдает, так как плюс на минус дает минус.

  1. В результате за весь период у нас суммарное потребление энергии равно чему?
  2. Правильно, нулю!

Так что же это получается тогда? На катушке и конденсаторе не будет выделяться никакой энергии? Получается так. Поэтому в схемах они чаще всего холодные, хотя могут быть и слегка теплыми, так как реальные параметры катушки и конденсатора выглядят совсем по другому.

  • Эквивалентная схема реальной катушки индуктивности выглядит вот так:
  • где

RL  – это сопротивление потерь. Это могут быть потери в проводах, так как любой провод обладает сопротивлением. Это могут быть потери в диэлектрике, потери в сердечнике и потери на вихревые токи.  Как видите, раз есть сопротивление, значит на нем может выделяться мощность, то есть тепло.

  1. L – собственно сама индуктивность катушки
  2. С – межвитковая емкость.
  3. А вот и эквивалентная схема реального конденсатора:
  4. где
  5. r – сопротивление диэлектрика и корпуса между обкладками
  6. С – собственно сама емкость конденсатора
  7. ESR – эквивалентное последовательное сопротивление
  8. ESI (ESL) – эквивалентная последовательная индуктивность

Здесь мы тоже видим такие параметры, как r  и ESR, которые на высоких частотах будут еще лучше себя проявлять, благодаря скин-эффекту. Ну и, соответственно, на них будет выделяться мощность, что приведет к небольшому малозаметному нагреву.

Резюме

Резистор обладает активным (омическим) сопротивлением. Катушка индуктивности и конденсатор обладают реактивным сопротивлением.

  • В цепи переменного тока на конденсаторе ток опережает напряжение на 90 градусов, а на катушке ток отстает от напряжения на 90 градусов.
  • Сопротивление катушки вычисляется по формуле
  • Сопротивление конденсатора вычисляется по формуле:
  • В цепи переменного тока на идеальном реактивном сопротивлении не выделяется мощность.

Реальные катушка и конденсатор имеют в своем составе паразитные параметры, которые имеют некоторое сопротивление. Поэтому реальные катушка и конденсатор не обладают чисто реактивным сопротивлением.

Источник: https://www.RusElectronic.com/reaktivnoe-soprotivlenie-i-moshchnost/

Расчет сопротивления онлайн по схеме

В схемах со светодиодами обязательно используются резисторы для ограничения. Они защищают от перегорания и преждевременного выхода из строя светодиодных элементов.

Основная проблема заключается в точном подборе необходимых параметров, поэтому у специалистов широкой популярностью пользуется калькулятор расчета сопротивления для светодиодов.

Для получения максимально точных результатов потребуются данные о напряжении источника питания, о прямом напряжении самого светодиода и его расчетном токе, а также схема подключения и количество элементов.

Как рассчитать сопротивление токоограничивающих резисторов

В самом простом случае, когда отсутствуют необходимые исходные данные, величину прямого напряжения светодиодов можно с высокой точностью установить по цвету свечения. Типовые данные об этом физическом явлении сведены в таблицу.

Онлайн калькулятор расчета реактивного сопротивления

Многие светодиоды имеют расчетный ток 20 мА. Существуют и другие виды элементов, у которых этот параметр может достигать значения 150 мА и выше.

Поэтому для того чтобы точно определить номинальный ток, понадобятся данные о технических характеристиках светодиода.

Если же нужная информация полностью отсутствует, номинальный ток элемента условно принимается за 10 мА, а прямое напряжение – 1,5-2 вольта.

Количество токоограничивающих резисторов напрямую зависит от схемы подключения полупроводниковых элементов. Например, если используется последовательное соединение, можно вполне обойтись одним резистором, поскольку сила тока во всех точках будет одинаковой.

В случае параллельного соединения одного гасящего резистора будет уже недостаточно. Это связано с тем, что характеристики светодиодов не могут быть абсолютно одинаковыми. Все они обладают собственными сопротивлениями и такими же разными потребляемыми токами. То есть, элемент с минимальным сопротивлением потребляет большее количество тока и может преждевременно выйти из строя.

Онлайн калькулятор расчета реактивного сопротивления

Следовательно, если выйдет из строя хотя-бы один светодиод из подключенных параллельно, это приведет к возникновению повышенного напряжения, на которое остальные элементы не рассчитаны. В результате, они тоже перестанут работать. Поэтому при параллельном соединении для каждого светодиода предусматривается собственный резистор.

Все эти особенности учтены в онлайн-калькуляторе. В основе расчетов лежит формула определения сопротивления: R = Uгасящее/Iсветодиода. В свою очередь Uгасящее = Uпитания – Uсветодиода.

  • Онлайн расчёт электрических величин напряжения, тока и мощности для: участка цепи, полной цепи с резистивными, ёмкостными и индуктивными
  • элементами.

— А любите ли Вы закон Ома так, как люблю его я? — спросил учитель физики стоящего рядом с щитком и разглядывающего свой обугленный палец электрика, — Всеми силами души Вашей, со всем энтузиазмом и исступлением, к которому только способна пылкая молодость, — никак не угомонялся он, сверкая из-под очков пытливым взглядом. — Мужик, ты что, дурак? – вежливо поинтересовался обиженный противоестественным вопросом электрик и пошёл, насвистывая «Калинку-Малинку» в направлении ближайшего супермаркета — не ради пьянства окаянного, а дабы залечить свой увечный палец.

А тем временем, закон Ома является в электротехнике основным законом, который устанавливает связь силы электрического тока с сопротивлением и напряжением.

Формулировка закона Ома для участка цепи может быть представлена так: сила тока в проводнике прямо пропорциональна напряжению (разности потенциалов) на его концах и обратно пропорциональна сопротивлению этого проводника и записана в следующем виде: I=U/R,

  Ковка на палисадник фотоОнлайн калькулятор расчета реактивного сопротивления

R – электрическое сопротивление проводника, измеряемое в омах [Ом].

  1. Производные от этой формулы приобретают такой же незамысловатый вид: R=U/I и U=R×I.
  2. Зная любые два из трёх приведённых параметров можно легко произвести расчёт и величины мощности, рассеиваемой на резисторе. Мощность является функцией протекающего тока I(А) и приложенного напряжения U(В) и вычисляется по следующим формулам, также являющимся производными от основной формулы закона Ома: P(Вт) = U(В)×I(А) = I 2 (А)×R(Ом) = U 2 (В)/R(Ом)
  3. Можно, конечно, описывая закон Ома обойтись и вообще без формул, а вместо них пользоваться словами или картинками:

Онлайн калькулятор расчета реактивного сопротивления

С другой стороны, формулы настолько просты, что не стоят выеденного яйца и, возможно, вообще не заслуживают отдельной крупной статьи на страницах уважающего себя сайта.

Не заслуживают, так не заслуживают. Калькулятор Вам в помощь, дамы и рыцари! Считайте, учитывайте размерность, не стирайте из памяти, что: 1В=1000мВ=1000000мкВ; 1А=1000мА=1000000мкА; 1Ом=0.001кОм=0.000001МОм;

  • 1Вт=1000мВт=100000мкВт.
  • Ну и так, на всякий случай, чисто для проверки полученных результатов, приведём незамысловатую таблицу, позволяющую в онлайн режиме проверить расчёты, связанные со знанием формул закона Ома.
  • ТАБЛИЦА ДЛЯ ПРОВЕРКИ РЕЗУЛЬТАТОВ РАСЧЁТОВ ЗАКОНА ОМА.
  • Вводить в таблицу нужно только два имеющихся у Вас параметра, остальные посчитает таблица.

Все наши расчёты проводились при условии, что значение внешнего сопротивления R значительно превышает внутреннее сопротивление источника напряжения rвнутр .

Если это условие не соблюдается, то под величиной R следует принять сумму внешнего и внутреннего сопротивлений: R = Rвнешн + rвнутр , после чего закон приобретает солидное название — закон Ома для полной цепи: I=U/(R+r) .

Онлайн калькулятор расчета реактивного сопротивления

Значения последовательно соединённых резисторов просто суммируются, в то время как значения параллельно соединённых резисторов определяются исходя из формулы: 1/Rll = 1/R4+1/R5 . А онлайн калькулятор для расчёта величин сопротивлений при параллельном соединении нескольких проводников можно найти на странице ссылка на страницу.

Теперь, что касается закона Ома для переменного тока. Если внешнее сопротивление у нас чисто активное (не содержит ёмкостей и индуктивностей), то формула, приведённая выше, остаётся в силе.

Единственное, что надо иметь в виду для правильной интерпретации закона Ома для переменного тока — под значением U следует понимать действующее (эффективное) значение амплитуды переменного сигнала.

А что такое действующее значение и как оно связано с амплитудой сигнала переменного тока? Приведём диаграммы для нескольких различных форм сигнала.

Онлайн калькулятор расчета реактивного сопротивления

Слева направо нарисованы диаграммы синусоидального сигнала, меандра (прямоугольный сигнал со скважностью, равной 2), сигнала треугольной формы, сигнала пилообразной формы. Глядя на рисунок можно осмыслить, что амплитудное значение приведённых сигналов — это максимальное значение, которого достигает амплитуда в пределах положительной, или отрицательной (в наших случаях они равны) полуволны.

  1. Рассчитываем действующее значение напряжение интересующей нас формы:
  2. Для синуса U = Uд = Uа/√2; для треугольника и пилы U = Uд = Uа/√3;
  3. для меандра U = Uд = Uа.
  4. С этим разобрались!
  5. Теперь посмотрим, как будет выглядеть формула закона Ома при наличии индуктивности или ёмкости в цепи переменного тока. В общем случае смотреться это будет так:

  Как подключить перекрестный выключательОнлайн калькулятор расчета реактивного сопротивления

А формула остаётся прежней, просто в качестве сопротивления R выступает полное сопротивление цепи Z, состоящее из активного, ёмкостного и индуктивного сопротивлений.

Поскольку фазы протекающего через эти элементы тока не одинаковы, то простым арифметическим сложением сопротивлений этих трёх элементов обойтись не удаётся, и формула приобретает вид: Онлайн калькулятор расчета реактивного сопротивления Реактивные сопротивления конденсаторов и индуктивностей мы с Вами уже рассчитывали на странице ссылка на страницу и знаем, что величины эти зависят от частоты, протекающего через них тока и описываются формулами: XC = 1/(2πƒС) , XL = 2πƒL .

Нарисуем таблицу для расчёта полного сопротивления цепи для переменного тока. Количество вводимых элементов должно быть не менее одного, при наличии индуктивного или емкостного элемента — необходимо указать значение частоты f !

  • КАЛЬКУЛЯТОР ДЛЯ ОНЛАЙН РАСЧЁТА ПОЛНОГО СОПРОТИВЛЕНИЯ ЦЕПИ.
  • Теперь давайте рассмотрим практический пример применения закона Ома в цепях переменного тока и рассчитаем простенький бестрансформаторный источник питания. Онлайн калькулятор расчета реактивного сопротивления
  • Токозадающими цепями в данной схеме являются элементы R1 и С1.

Допустим, нас интересует выходное напряжение Uвых = 12 вольт при токе нагрузки 100 мА. Выбираем стабилитрон Д815Д с напряжением стабилизации 12В и максимально допустимым током стабилизации 1,4А. Зададимся током через стабилитрон с некоторым запасом — 200мА.

С учётом падения напряжения на стабилитроне, напряжение на токозадающей цепи равно 220в — 12в = 208в. Теперь рассчитаем сопротивление этой цепи Z для получения тока, равного 200мА: Z = 208в/200мА = 1,04кОм.

Резистор R1 является токоограничивающим и выбирается в пределах 10-100 Ом в зависимости от максимального тока нагрузки. Зададимся номиналами R1 — 30 Ом, С1 — 1 Мкф, частотой сети f — 50 Гц и подставим всё это хозяйство в таблицу.

Получили полное сопротивление цепи, равное 3,183кОм. Многовато будет — надо увеличивать ёмкость С1.

Поигрались туда-сюда, нашли нужное значение ёмкости — 3,18 Мкф, при котором Z = 1,04кОм.

Всё — закон Ома выполнил свою функцию, расчёт закончен, всем спать полчаса!

Калькулятор параллельных сопротивлений

Калькулятор определяет сопротивление нескольких параллельно соединенных резисторов.

Пример. Рассчитать эквивалентное сопротивление двух резисторов 20 Ом and 30 Ом, соединенных параллельно.

Введите величины сопротивлений в поля R1, R2 и т.д., добавляя при необходимости нужное количество полей для ввода, выберите единицы сопротивления в миллиомах (мОм), омах (Ом), килоомах (кОм) или мегаомах (МОм) и нажмите кнопку Рассчитать.

1 мОм = 0,001 Ом. 1 кОм = 1 000 = 10³ Ом. 1 МОм = 1 000 000 = 10⁶ Ом.

  1. Эквивалентное сопротивление Req группы параллельно соединенных резисторов является величиной, обратной сумме величин, обратно пропорциональных сопротивлениям этих резисторов.
  2. Иными словами, проводимость G параллельно соединенных резисторов равна сумме проводимостей этих резисторов:

Эта формула для Req и используется в данном калькуляторе для расчетов. Например, общее сопротивление трех резисторов 10, 15 и 20 ом, соединенных параллельно, равно 4.62 Ом:

  • Если параллельно соединены только два резистора, формула упрощается:
  • Если имеется n соединенных параллельно одинаковых резисторов R, то их эквивалентное сопротивление будет равно
  • Отметим, что общее сопротивление группы из любого количества соединенных параллельно резисторов всегда будет меньше, чем наименьшее сопротивление резистора в группе и добавление нового резистора всегда приведет к уменьшению эквивалентного сопротивления.

Отметим также, что все резисторы, соединенные параллельно находятся под одним и тем же напряжением. Однако токи, протекающие через отдельные резисторы, отличаются и зависят от их сопротивления. Общий ток через группу резисторов равен сумме токов в отдельных резисторах.

  Самодельные гибочные станки для профильной трубы

При соединении нескольких резисторов параллельно всегда нужно учитывать их допуски и рассеиваемую мощность.

Примеры применения параллельного соединения резисторов

Одним из примеров параллельного соединения резисторов является шунт в приборе для измерения токов, которые слишком велики для того, чтобы быть напрямую измеренными прибором, предназначенным для измерения небольших токов или напряжений.

Для измерения тока параллельно гальванометру или электронному прибору, измеряющему напряжение, подключается резистор с очень маленьким точно известным сопротивлением, изготовленный из материала со стабильными характеристиками. Этот резистор называется шунтом.

Измеряемый ток протекает через шунт. В результате на нем падает небольшое напряжение, которое и измеряется вольтметром.

Поскольку падение напряжения пропорционально току, протекающему через шунт с известным и точным сопротивлением, вольтметр, подключенный параллельно шунту, можно проградуировать непосредственно в единицах тока (амперах).

Параллельные и последовательные схемы часто используются для получения точного сопротивления или если резистора с требуемым сопротивлением нет или он слишком дорог, если его приобретать в небольших количествах для массового производства. Например, если устройство содержит много резисторов по 20 кОм и необходим только один резистор 10 кОм. Конечно, несложно найти резистор на 10 кОм.

Однако для массового производства иногда бывает лучше поставить два резистора на 20 кОм параллельно, чтобы получить необходимые 10 кОм. Это приведет к снижению себестоимости печатной платы, так как будет снижена оптовая цена компонентов, а также стоимость монтажа, так как будет уменьшено количество типоразмеров элементов, которые должен установить на плату автомат установки компонентов.

Примеры расчетов

Радиотехнические калькуляторы

Электроника — область физики и электротехники, изучающая методы конструирования и использования электронной аппаратуры и электронных схем, содержащих активные электронные элементы (диоды, транзисторы и интегральные микросхемы) и пассивные электронные элементы (резисторы, катушки индуктивности и конденсаторы), а также соединения между ними. Радиотехника — инженерная дисциплина, изучающая проектирование и изготовление устройств, которые передают и принимают радиоволны в радиочастотной области спектра (от 3 кГц до 300 ГГц), также обрабатывают принимаемые и передаваемые сигналы. Примерами таких устройств являются радио- и телевизионные приемники, мобильные телефоны, маршрутизаторы, радиостанции, кредитные карточки, спутниковые приемники, компьютеры и другое оборудование, которое передает и принимает радиосигналы. В этой части Конвертера физических единиц TranslatorsCafe.com представлена группа калькуляторов, выполняющих расчеты в различных областях радиотехники и электроники.

На этих страницах размещены конвертеры единиц измерения, позволяющие быстро и точно перевести значения из одних единиц в другие, а также из одной системы единиц в другую. Конвертеры пригодятся инженерам, переводчикам и всем, кто работает с разными единицами измерения.

Мы работаем над обеспечением точности конвертеров и калькуляторов TranslatorsCafe.com, однако мы не можем гарантировать, что они не содержат ошибок и неточностей. Вся информация предоставляется «как есть», без каких-либо гарантий. Условия.

Если вы заметили неточность в расчётах или ошибку в тексте, или вам необходим другой конвертер для перевода из одной единицы измерения в другую, которого нет на нашем сайте — напишите нам!

Расчет сопротивления онлайн по схеме Ссылка на основную публикацию

Источник: https://MyTooling.ru/instrumenty/raschet-soprotivlenija-onlajn-po-sheme

Реактивное сопротивление XL и XC

Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.

Элементы, обладающие реактивным сопротивлением, называют реактивными.

Реактивное сопротивление катушки индуктивности

При протекании переменного тока I в катушке, магнитное поле создаёт в её витках ЭДС, которая препятствует изменению тока.
При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении — положительна и препятствует его убыванию, оказывая таким образом сопротивление изменению тока на протяжении всего периода.

Онлайн калькулятор расчета реактивного сопротивления

В результате созданного противодействия, на выводах катушки индуктивности в противофазе формируется напряжение U, подавляющее ЭДС, равное ей по амплитуде и противоположное по знаку.

При прохождении тока через нуль, амплитуда ЭДС достигает максимального значения, что образует расхождение во времени тока и напряжения в 1/4 периода.

Если приложить к выводам катушки индуктивности напряжение U, ток не может начаться мгновенно по причине противодействия ЭДС, равного -U, поэтому ток в индуктивности всегда будет отставать от напряжения на угол 90°. Сдвиг при отстающем токе называют положительным.

Запишем выражение мгновенного значения напряжения u исходя из ЭДС (ε), которая
пропорциональна индуктивности L и скорости изменения тока: u = -ε = L(di/dt).
Отсюда выразим синусоидальный ток Онлайн калькулятор расчета реактивного сопротивления.

Интегралом функции sin(t) будет -соs(t), либо равная ей функция sin(t-π/2).
Дифференциал dt функции sin(ωt) выйдет из под знака интеграла множителем 1.

В результате получим выражение мгновенного значения тока Онлайн калькулятор расчета реактивного сопротивления со сдвигом от функции напряжения на угол π/2 (90°). Для среднеквадратичных значений U и I в таком случае можно записать Онлайн калькулятор расчета реактивного сопротивления.

В итоге имеем зависимость синусоидального тока от напряжения согласно Закону Ома, где в знаменателе вместо R выражение ωL, которое и является реактивным сопротивлением:

Онлайн калькулятор расчета реактивного сопротивления

Реактивное сопротивлениие индуктивностей называют индуктивным.

Реактивное сопротивление конденсатора

Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда – накопления и отдачи энергии электрическим полем между его обкладками.

В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное. Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю.
Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.

В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току, обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.

Если приложить к конденсатору напряжение U, мгновенно начнётся ток от максимального значения, далее уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума. Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.

Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt).
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2).
Тогда для синусоидального напряжения u = Uampsin(ωt) запишем выражение мгновенного значения тока следующим образом:

i = UampωCsin(ωt+π/2).

Онлайн калькулятор расчета реактивного сопротивления

Закон Ома подсказывает, что 1/ωC есть не что иное, как реактивное сопротивление для синусоидального тока:

Онлайн калькулятор расчета реактивного сопротивления

Реактивное сопротивление конденсатора в технической литературе часто называют ёмкостным. Может применяться, например, в организации ёмкостных делителей в цепях переменного тока.

Онлайн-калькулятор расчёта реактивного сопротивления

Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Реактивное сопротивление ёмкостиXC = 1 /(2πƒC) Реактивное сопротивление индуктивностиXL = 2πƒL

Расчитать ёмкость или индуктивность для реактивного сопротивления:

Расчёт ёмкости: C = 1 /(2πƒXC) Расчёт индуктивности: L = XL /(2πƒ)

Похожие страницы с расчётами:

Расcчитать импеданс.

Расcчитать частоту резонанса колебательного контура LC.
Расcчитать реактивную мощность и компенсацию.

Источник: https://tel-spb.ru/rea.html

Калькулятор

Программа «Калькулятор» представляет собой электротехнический калькулятор, позволяющий рассчитывать параметры колебательных контуров, определять индуктивности обособленных проводников и катушек различных типов, а также производить вычисления активных и реактивных сопротивлений. Помимо этого, в программу интегрирован поиск аналогов отечественных и зарубежных транзисторов и микросхем, а также модуль, содержащий справочные данные по SMD транзисторам и дающий возможность определять по цветовой маркировке номинал и класс точности резисторов и дросселей.

В меню «Расчёты» содержится три подпункта: «Колебательный контур», «Индуктивность» и «Сопротивление». В каждом из них, в свою очередь, можно выбрать необходимый шаблон для вычислений.

Онлайн калькулятор расчета реактивного сопротивления

Шаблон для расчёта последовательного и параллельного колебательных контуров позволяет при задании резонансной частоты и ёмкости либо индуктивности определить недостающий параметр. При выборе расширенного режима расчёта контура дополнительно появляется возможность задать параметры волны, а также рассчитать физические параметры катушки индуктивности.

В подпункте «Индуктивность» можно выбрать шаблоны для расчёта габаритных параметров цилиндрических однослойных и многослойных катушек, дросселей на ферритовых кольцах и сердечниках, а также индуктивностей обособленных проводников. К примеру, в последнем случае задаются два из трёх параметров – длина проводника, диаметр его сечения и индуктивность, а третий рассчитывается автоматически. В остальных случаях расчёты производятся аналогичным образом.

Онлайн калькулятор расчета реактивного сопротивления

В подпункте «Сопротивления» присутствуют два раздела: «Активное» и «Реактивное».

В первом содержатся шаблоны для вычислений электрических параметров участка цепи по закону Ома, определения общего сопротивления двух параллельных резисторов, расчёта параметров добавочного сопротивления, делителя напряжения, шунтов, амперметров и вольтметров.

Также есть возможность двустороннего пересчёта сопротивлений при соединении резисторов «звездой» и «треугольником». Во втором разделе присутствуют два шаблона: для расчёта реактивного сопротивления катушки индуктивности и конденсатора. Порядок и схема вычислений полностью идентичны описанным ранее.

В пункте меню «Маркировка» присутствует три раздела: «Сопротивления», «Дроссели» и «SMD транзисторы». В первых двух можно задать цвет и количество (для резисторов) маркировочных полос для определения номинала и класса точности элемента.

Также доступна и обратная операция – при заданных параметрах программа изобразит цветовую маркировку на модели.

Во вкладке «SMD транзисторы» открывается поисковик, осуществляющий выборку из базы данных всех элементов, соответствующих заданным критериям поиска.

Онлайн калькулятор расчета реактивного сопротивления

Пункт «Аналоги» по-сути также представляет собой поисковики по базам данных микросхем и транзисторов. При этом производится выборка соответствий между компонентами отечественного и зарубежного производства.

Калькулятор совместим с Windows XP, Windows 7 x32/x64.

Распространение программы: Freeware (бесплатная)

Официальный сайт программы «Калькулятор»: http://calculator2006.narod.ru Разработчик: Ivan219

Скачать Калькулятор

Обсуждение программы на форуме

Источник: https://cxem.net/software/calculator.php

1. Обзор R, X, и Z

Обзор R, X, и Z

Прежде чем мы начнем исследовать цепи переменного тока, содержащие одновременно резисторы, катушки индуктивности и конденсаторы, давайте кратко рассмотрим некоторые основные термины и факты.

Сопротивление — это воздействие силы трения на электроны при их движении через проводник. Сопротивление в некоторой степени присутствует во всех проводниках (за исключением сверхпроводников).

Особенно оно характерно для резисторов. Когда переменный ток проходит через сопротивление, произведенное им напряжение находится в фазе с этим током.

Сопротивление обозначается буквой «R» и измеряется в Омах (Ом, Ω).

Реактивное сопротивление по существу — это инерция против движения электронов. Реактивное сопротивление существует там, где электрические или магнитные поля развиваются пропорционально приложенному напряжению или току.

Прежде всего оно характерно для конденсаторов и катушек индуктивности. Когда переменный ток проходит через чисто реактивное сопротивление, производимое им напряжение не совпадает по фазе с током на 90o.

Реактивное сопротивление обозначается буквой «X» и измеряется тоже в Омах (Ом, Ω).

Импеданс является всеобъемлющим выражением всех видов сопротивлений потоку электронов (включая активное и реактивное сопротивления).

Импеданс присутствует во всех схемах и во всех компонентах. Когда переменный ток проходит через импеданс, производимое им напряжение не совпадает по фазе с током от 0o до 90o.

Импеданс обозначается буквой «Z» и измеряется так же в Омах (Ом, Ω).

Идеальные резисторы обладают обычным сопротивлением, но у них нет реактивного сопротивления. Идеальные катушки индуктивности и конденсаторы обладают реактивным сопротивлением, но у них нет обычного сопротивления.

Все вышеперечисленные компоненты обладают импедансом. Исходя из этого, имеет смысл перевести все значения активных и реактивных сопротивлений в соответствующие импедансы.

Это будет первым шагом в анализе цепей переменного тока.

Онлайн калькулятор расчета реактивного сопротивления

Фазовый угол импеданса любого компонента представляет собой сдвиг фазы между напряжением на этом компоненте и током через него.

У идеального резистора напряжение и ток всегда находятся в фазе друг с другом, а значит, угол его импеданса составляет 0o. У идеальной катушки индуктивности напряжение всегда опережает ток на 90o, а значит, угол ее импеданса составляет +90o.

У идеального конденсатора напряжение всегда отстает от тока на 90o, а значит, угол его импеданса составляет -90o.

Импедансы в цепях переменного тока ведут себя аналогично сопротивлениям в цепях постоянного тока: в последовательных цепях их значение увеличивается, а в параллельных — уменьшается. Пересмотренный на основе импеданса Закон Ома выглядит следующим образом:

Онлайн калькулятор расчета реактивного сопротивления

Законы Кирхгофа, все методы анализа цепей и теоремы, рассмотренные нами в предыдущем разделе, верны и для цепей переменного тока (при условии, что величины представляются в комплексной, а не скалярной форме). Несмотря на то, что эта эквивалентность может быть математически сложной, она концептуально проста и изящна.

Единственное различие между расчетами постоянных и переменных цепей касается мощности. Поскольку реактивное сопротивление не рассеивает мощность (как это делает обычное сопротивление), понятие мощности в цепях переменного тока в корне отличается от понятия мощности в цепях постоянного тока.

Подробнее об этом мы расскажем несколько позже.

Источник: http://www.radiomexanik.spb.ru/5.-reaktivnoe-soprotivlenie-i-impedans-r-l-i-c/1.-obzor-r-x-i-z.html

Реактивное сопротивление

Реактивное сопротивление относится к числу явлений, наблюдаемых в цепях переменного тока. Тем, кто занимается ремонтом и эксплуатацией таких цепей, будет полезно знать, как определяется эта величина, и каким образом она влияет на процессы, происходящие в электросети.

Соленоид – устройство, обладающее индуктивностью

Понятие реактивного сопротивления

Данная разновидность репрезентирует взаимоотношение электротока и напряжения на определенных типах подключенных в сеть нагрузок (дросселях, конденсаторных компонентах), не сопряженное с объемами электроэнергии, используемыми потребителем. Измерительной единицей, как и для других разновидностей, выступает ом. Рассматриваемое явление обнаруживает себя только при переменном электротоке. В расчетах оно обозначается латинской литерой Х.

Различия между активным и реактивным сопротивлением

Разница между активным и реактивным сопротивлением состоит в том, что при прохождении электротока по компонентам цепи, несущим активную нагрузку, имеют место мощностные потери в виде выделения тепла, которое не может быть снова превращено в электрическую энергию.

В качестве наглядного примера можно привести конфорку электроплиты, выделяющую тепловую энергию. Такими свойствами обладают и осветительные устройства, электрические двигатели, различные кабели. Фазы проходящих через такие компоненты напряжения и электротока будут совпадать.

Внутреннее сопротивление – формула

Реактивные нагрузки отличаются наличием емкостных свойств либо способностью к индукции. В первом случае величина рассматриваемого сопротивления зависит от емкости, во втором – от электродвижущей силы самоиндукции.

Важно! Величина, в противоположность активной, может иметь плюсовой и минусовой знаки. Это зависит от того, в какую сторону идет фазовый сдвиг. При опережении электрическим током напряжения будет иметь место отрицательный показатель, в обратном случае – положительный.

Виды и свойства реактивного сопротивления

Данная величина может иметь две формы:

  • емкостную – присущую конденсаторным элементам;
  • индуктивную – характерную для катушек, соленоидов и обмоток.

Важно! Если к трансформатору подключить активную нагрузку, реактивное сопротивление понизится, так как упадет значение того типа мощности, который его вызывает. В некоторых цепях с несколькими индуктивными или емкостными нагрузками имеет место взаимоуничтожение фазовых сдвигов, приходящихся на разные детали, тогда комплексная величина будет равной нулю.

Треугольник сопротивлений

Виды пассивных элементов

Эквивалентное сопротивление

Данные устройства характеризуются тем, что вместо рассеивания энергии склонны к ее накоплению. Разные типы таких деталей создают различные формы сопротивления.

Катушка индуктивности

Это радиокомпонент, представляющий собой проводниковый элемент спиральной или винтообразной формы, покрытый изоляцией.

В схемах катушки используют для нивелирования помех и искажений, снижения величины переменного тока, генерации магнитного поля. Длинные тонкие элементы носят название соленоидов.

Катушки отличаются небольшими величинами активной сопротивляемости и емкости, но обладают индуктивностью, генерируя электродвижущую силу.

Подключение катушки в электрическую цепь

Емкостной элемент

Примером этого вида деталей является конденсатор. Он включает в себя две проводящие обкладки, между которыми находится диэлектрический материал. Протекание электротока обусловлено накоплением и отдачей обкладками своего заряда.

Подсоединение конденсатора в электроцепь

Конденсатор в цепи переменного тока

Конденсаторные устройства характеризуются неспособностью пропускать константный электроток. Так что если устройство подсоединить последовательно к источнику такого тока, в цепи электроток идти не будет. В переменных цепях дело обстоит иначе. Если цепочка содержит только емкостной компонент, в ней будет проходить ток, обгоняющий по фазе напряжение на 90°.

Важно! Величина электротока определяется его частотой и емкостной характеристикой использованного конденсатора.

Реактивное сопротивление конденсатора

  • Его можно узнать, воспользовавшись формулой:
  • Х=1/(C*w).
  • Здесь С – емкостная величина рассматриваемой детали, а w – угловая частота. При параллельном подключении элементов будет справедлива формула:
  • 1/Хобщ = 1/Х1 + 1/Х2 +…
  • Если конденсаторы объединены последовательно, для нахождения комплексного показателя системы потребуется сложить значения для всех компонентов:
  • Хобщ = Х1 + Х2 +…

Катушка индуктивности в цепи переменного тока

В отличие от предыдущего случая, при подключении катушечного элемента идущий по нему электроток будет отставать от напряжения. Однако величина фазового сдвига будет аналогичной – 90°. При этом за препятствование быстрому увеличению тока ответственна ЭДС. Элемент способен играть роль безваттного резистора.

Реактивное сопротивление катушки индуктивности

В его расчете поможет выражение:

X = L*w.

Здесь L – показатель индуктивности подсоединенного элемента. При последовательном включении в сеть серии катушек индуктивная компонента сопротивления такой композиции может быть выражена как сумма таковых для всех деталей. Если применено параллельное соединение, справедливым будет выражение:

  1. 1/Хобщ = 1/Х1 + 1/Х2 +…
  2. Как для катушки, так и для конденсаторных деталей будет верной запись закона Ома:
  3. X = U/I, в которой U – величина падения напряжения на элементе.

Почему не сгорает первичная обмотка трансформатора

Иногда при эксплуатации трансформаторов возникает вопрос, почему не происходит сгорание обмотки, если ее сопротивляемость оказывается малой. Обмоточный компонент по своему устройству может быть приравнен к катушке. Соответственно, искомый показатель может быть вычислен с помощью выражения:

X = 2*π*L*F, где L – частота, F – индуктивность.

Поскольку последняя у трансформатора оказывается достаточно большой, таковым будет и итоговое число.

Мощность в цепи с реактивными радиоэлементами

При подключении таких элементов в цепь в четных четвертях периода мощность будет иметь отрицательное значение (в это время компонент направляет накопленную энергию в источник напряжения). В итоге использование энергии элементом за весь цикл оказывается равным нулю.

Это означает, что на нем не происходит выделения энергии, так что на электросхемах такие детали изображаются холодными. На деле положение вещей может быть немного иным (это зависит от параметров конкретного элемента), бывает, что небольшие тепловые потери на конденсаторе или соленоиде все-таки имеют место.

Но они не будут значительными, измеряющимися в кв.

Компенсация реактивной мощности

При подключении большого числа индуктивных компонентов генерируемая ими реактивная мощность создает избыточную нагрузку на трансформаторы и в целом ведет к бесполезной потере энергии.

Чтобы это нивелировать, параллельно можно подсоединить конденсатор. Если правильно подобрать номинал, можно скомпенсировать фазовый сдвиг, что сильно снизит энергетические потери.

Емкость этого устройства С равна 1/(2*π*f*X), где Х – параметр сопротивляемости подключенной нагрузки, равный U2/Q (Q – реактивная мощность).

Формула расчета реактивного сопротивления

  • В общем случае для деталей катушечного типа применяются выражения:
  • X = L*w = 2* π*f*L.
  • Для конденсаторов применяют формулы:
  • X = 1/(w*C)= 1/(2* π*f*C).

Для конкретного элемента, нужные параметры которого известны, величина может быть вычислена с использованием онлайн калькулятора.

В форму потребуется ввести нужные данные и нажать на кнопку, инициирующую расчеты.

Умение рассчитывать данную составляющую сопротивляемости поможет узнать величину тепловых потерь на используемых нагрузках. При параллельном подсоединении конденсатора с подходящей емкостью можно решить проблему энергетических потерь на индуктивных нагрузках.

Видео

Источник: https://amperof.ru/teoriya/reaktivnoe-soprotivlenie.html

Реактивное сопротивление

Главная > Теория > Реактивное сопротивление

В цепь переменного электрического тока входят активные (содержащие внутренние источники энергии) и пассивные элементы (потребители энергии). К пассивным элементам относят резисторы и реактивные устройства.

Виды пассивных элементов

В электротехнике рассматривают два типа резисторов: активное и реактивное сопротивление. Активным – обладают приборы, в которых энергия электрического тока преобразуется в тепловую. В физике оно обозначается символом R. Единица измерения – Ом.

  • Рассчитать его можно, используя закон Ома:
  • R = U/I.
  • Этой формулой можно пользоваться для расчёта по мгновенным значениям тока и напряжения, максимальным или действующим.
  • Реактивные устройства энергию не рассеивают, а накапливают. К ним относятся:
  • катушка индуктивности;
  • конденсатор.

Реактивное сопротивление обозначается символом Х. Единица измерения – Ом.

Катушка индуктивности

Представляет собой проводник, выполненный в форме спирали, винта или винтоспирали. Благодаря высокой инерционности, прибор используют в схемах, которые применяются для уменьшения пульсаций в цепях переменного тока и колебательных контурах, для создания магнитного поля и т.д. Если она имеет большую длину при небольшом диаметре, то катушку называют соленоидом.

Для вычисления падения напряжения (U) на концах катушки используют формулу:

U = –L·DI/Dt, где:

  • L – индуктивность прибора, измеряется в Гн (генри),
  • DI – изменение силы тока (измеряется в амперах) за промежуток времени Dt (измеряется в секундах).

Внимание! При любом изменении тока в проводнике возникает ЭДС самоиндукции, которая препятствует этому изменению.

  1. Вследствие этого в катушке возникает сопротивление, которое называется индуктивным.
  2. В электротехнике обозначается ХL и рассчитывается по формуле:
  3. ХL = w · L,
  4. где w – угловая частота, измеряется в рад/с.

Угловая частота является характеристикой гармоничного колебания. Связана с частотой f (количество полных колебаний в секунду). Частота измеряется в колебаниях в секунду (1/с):

  • w = 2 · p · f.
  • Если в схеме используется несколько катушек, то при их последовательном соединении общее ХL для всей системы будет равно:
  • XL = XL1 + XL2 + …
  • В случае параллельного соединения:
  • 1/XL = 1/XL1 + 1/XL2 + …
  • Закон Ома для такого соединения имеет вид:
  • XL=UL/I,
  • где UL – падение напряжения.
  • Помимо индуктивного, устройство обладает и активным R.
  • Электрический импеданс в этом случае равен:
  • Z = XL + R.

Емкостной элемент

В проводниках и обмотке катушки, кроме индуктивного и активного сопротивлений, присутствует и емкостное, которое обусловлено наличием ёмкости в этих приборах. Кроме резистора и катушки, в схему может быть включен конденсатор, который состоит из двух металлических пластин, между которыми размещён слой диэлектрика.

К сведению. Электрический ток протекает за счёт того, что в устройстве проходят процессы заряда и разряда пластин.

  1. При максимальном заряде на пластинах прибора:
  2. U = max, I = 0.
  3. За счёт того, что резистивное устройство может накапливать энергию, его используют в приборах, которые стабилизируют напряжение в цепи.
  4. Возможность накапливать заряд характеризуется ёмкостью.
  5. Реактивное сопротивление конденсатора (ХС) можно рассчитать по формуле:
  6. XC = 1/(w·C), где:
  1. w – угловая частота,
  2. С – ёмкость конденсатора.
  • Единица измерения ёмкости – Ф (фарада).
  • Учитывая, что угловая частота связана с циклической частотой, расчет значения реактивного сопротивления конденсатора можно выполнить по формуле:
  • XC=1/(2·p·f·C).
  • Если в цепи последовательно соединены несколько устройств, то общее XС системы будет равно:
  • XС = XС1 + XС2 + …
  • Если соединение объектов параллельное, то:
  • 1/XC = 1/XC1 + 1/XC2+…
  • Закон Ома для этого случая записывается следующим образом:
  • XC = UC/I,
  • где UС – падение напряжения на конденсаторе.

Расчёт цепи

Эквивалентное сопротивление

  1. При последовательном соединении I = const в любой точке и, согласно закону Ома, его можно рассчитать по формуле:
  2. I = U/R,
  3. где Z – электрический импеданс.

Последовательное соединение элементов

  • Напряжение на устройствах рассчитывается следующим образом:
  • UR = I · R, UL = I · XL, UC = I · XC.
  • Вектор индуктивной составляющей напряжения направлен в противоположную сторону от вектора емкостной составляющей, поэтому:
  • UX = UL – UC,
  • следовательно, согласно расчётам:
  • X = XL – XC.

Внимание! Для вычисления значения импеданса можно воспользоваться «треугольником сопротивлений», в котором гипотенузой является значение Z, а катетами – значения X и R.

Треугольник сопротивлений

  1. Если в цепь подключены и конденсатор, и катушка индуктивности, то, согласно теореме Пифагора, гипотенуза (Z) будет равна:
  2. Так как X = XLXC, то:
  3. При решении электротехнических задач часто импеданс записывают в виде комплексного числа, в котором действительная часть соответствует значению активной составляющей, а мнимая – реактивной. Таким образом, выражение для импеданса в общем виде имеет вид:
  4. Z = R + X·i,
  5. где i – мнимая единица.

Для онлайн расчёта реактивного сопротивления можно использовать программу – калькулятор, которую можно найти в сети Интернет. Подобных сервисов достаточно много, поэтому вам не составит труда подобрать удобный для вас калькулятор.

Онлайн калькулятор для расчёта емкостных и индуктивных характеристик

Благодаря таким Интернет сервисам, можно быстро выполнить нужный расчёт.

Видео

Источник: https://jelectro.ru/teoriya/reaktivnoe-soprotivlenie.html

Ссылка на основную публикацию
Adblock
detector