Здравствуйте, уважаемые читатели сайта sesaga.ru. С этой статьи мы начнем изучение магнитного пускателя и все, что с ним связано, а идею этой темы подсказал постоянный читатель сайта Сергей Кр.
Магнитный пускатель является коммутационным аппаратом и относится к семейству электромагнитных контакторов, позволяющий коммутировать мощные нагрузки постоянного и переменного тока, и предназначен для частых включений и отключений силовых электрических цепей.
Магнитные пускатели применяются в основном для пуска, останова и реверсирования трехфазных асинхронных электродвигателей, однако, из-за своей неприхотливости они прекрасно работают в схемах дистанционного управления освещением, в схемах управления компрессорами, насосами, кран-балками, тепловыми печами, кондиционерами, ленточными конвейерами и т.д. Одним словом, у магнитного пускателя обширная область применения.
Как таковой магнитный пускатель уже трудно встретить в магазинах, так как их практически вытеснили контакторы.
Причем по своим конструктивным и техническим характеристикам современный контактор ничем не отличается от магнитного пускателя, а различить их можно только по названию.
Поэтому, когда будете приобретать в магазине пускатель, обязательно уточняйте, что это — магнитный пускатель или контактор.
Мы рассмотрим устройство и работу магнитного пускателя на примере контактора типа КМИ – контактор малогабаритный переменного тока общепромышленного применения.
Принцип работы магнитного пускателя
Принцип работы очень простой: напряжение питания подается на катушку пускателя, в катушке возникает магнитное поле, за счет которого вовнутрь катушки втягивается металлический сердечник, к которому закреплена группа силовых (рабочих) контактов, контакты замыкаются, и через них начинает течь электрический ток. Управление магнитным пускателем осуществляется кнопками «Пуск», «Стоп», «Вперед» и «Назад».
Устройство магнитного пускателя
Магнитный пускатель состоит из двух частей: сам пускатель и блок контактов.
Хотя блок контактов и не является основной частью магнитного пускателя и не всегда он используется, но если пускатель работает в схеме где должны быть задействованы дополнительные контакты этого пускателя, например, реверс электродвигателя, сигнализация работы пускателя или включение дополнительного оборудования пускателем, то для размножения контактов, как раз, и служит блок контактов или, как его еще называют — приставка контактная.
Блок контактов или приставка контактная
Внутри блока контактов (приставки контактной) встроена подвижная контактная система, которая жестко связывается с контактной системой магнитного пускателя и стает с ним как бы одним целым. Крепится приставка в верхней части пускателя, где для этого предусмотрены специальные полозья с зацепами.
Контактная система приставки состоит из двух пар нормально замкнутых и двух пар нормально разомкнутых контактов.
Чтобы идти дальше давайте сразу разберемся: что есть нормально замкнутый и нормально разомкнутый контакты. На рисунке ниже схематично показана кнопка с парой контактов под номерами 1-2 и 3-4, которые закреплены на вертикальной оси. В правой части рисунка показано графическое изображение этих контактов, используемое на электрических принципиальных схемах.
Нормально разомкнутый (NO) контакт в нерабочем состоянии всегда разомкнут, то есть, не замкнут. На рисунке он обозначен парой 1–2, и чтобы через него прошел ток контакт необходимо замкнуть.
Нормально замкнутый (NC) контакт в нерабочем состоянии всегда замкнут и через него может проходить ток. На рисунке такой контакт обозначен парой 3–4, и чтобы прекратить прохождение тока через него, надо контакт разомкнуть.
Теперь, если нажать кнопку, то нормально разомкнутый контакт 1-2 замкнется, а нормально замкнутый 3-4 разомкнется. О чем показывает рисунок ниже.
Вернемся к блоку контактов.
В исходном состоянии, когда магнитный пускатель обесточен, нормально разомкнутые контакты 53NO–54NO и 83NO–84NO разомкнуты, а нормально замкнутые 61NC–62NC и 71NC–72NC замкнуты. Об этом говорит шильдик с номерами клемм контактов, расположенный на боковой стенке блока контактов, а стрелка показывает направление движения контактной группы.
Теперь, если на катушку пускателя подать напряжение питания, то сердечник потянет за собой контакты блока контактов и нормально разомкнутые замкнутся, а нормально замкнутые разомкнутся.
Фиксируется блок контактов на пускателе специальной защелкой. А чтобы блок снять, достаточно приподнять защелку и выдвигать блок в сторону защелки.
Магнитный пускатель
Магнитный пускатель состоит как бы из верхней и нижней части.
В верхней части находится подвижная контактная система, дугогасительная камера и подвижная половинка электромагнита, которая механически связана с группой силовых контактов подвижной контактной системы.
Нижняя часть пускателя состоит из катушки, возвратной пружины и второй половинки электромагнита. Возвратная пружина возвращает верхнюю половинку в исходное положение после прекращения подачи питания на катушку, тем самым, разрывая силовые контакты пускателя.
Обе половинки электромагнита набраны из Ш-образных пластин, сделанных из электромагнитной стали. Это наглядно видно, если вытащить нижнюю половинку электромагнита.
- Катушка пускателя намотана медным проводом, и содержит N-ое количество витков, рассчитанное на подключение определенного питающего напряжения равного 24, 36, 110, 220 или 380 Вольт.
Ну и как происходит сам процесс.
При подаче напряжения питания в катушке возникает магнитное поле и обе половинки стремятся соединиться, образуя замкнутый контур. Как только отключаем питание, магнитное поле пропадает, и верхняя часть возвращается возвратной пружиной в исходное положение.
- Теперь осталось разобраться с питанием и характеристиками.
На боковой стенке пускателя, так же, как и у блока контактов, нанесена информация об электрических параметрах пускателя и для удобства условно разделена на три сектора:
Сектор №1
- В первом секторе дана общая информация о пускателе и его область применения:
- 50Гц – номинальная частота переменного тока, при которой возможна бесперебойная работа пускателя;
Категория применения АС-3 – двигатели с короткозамкнутым ротором: пуск, отключение без предварительной остановки.
Например: этот пускатель можно использовать для запуска и останова асинхронных двигателей с короткозамкнутым ротором, используемых в лифтах, эскалаторах, ленточных конвейерах, элеваторах, компрессорах, насосах, кондиционерах и т.д.
Для характеристики коммутационной способности контакторов и пускателей переменного тока установлены четыре категории применения, являющиеся стандартными: АС1, АС2, АС3, АС4. Каждая категория применения характеризуется значениями токов, напряжений, коэффициентов мощности или постоянных времени, условиями испытаний и других параметров установленных ГОСТ Р 50030.4.1-2002.
Iе 9А – номинальный рабочий ток. Это ток нагрузки, который в нормальном режиме работы может проходить через силовые контакты пускателя. В нашем примере этот ток составляет 9 Ампер.
Категория применения АС-1 – неиндуктивные или слабо индуктивные нагрузки, печи, сопротивления. Например: лампы накаливания, ТЭНы.
Ith 25A – условный тепловой ток (t° ≤ 40°). Это максимальный ток, который контактор или пускатель может проводить в 8-часовом режиме так, чтобы превышение температуры его различных частей не выходило за пределы 40°С.
Сектор №2
В этом секторе указана номинальная мощность нагрузки, которую могут коммутировать силовые контакты пускателя, и которая характеризуется категорией применения АС3 и измеряется в кВт (киловатт). Например, через контакты пускателя можно пропустить нагрузку мощностью 2,2 кВт, питающуюся переменным напряжением не более 230 Вольт.
Сектор №3
Здесь показана электрическая схема пускателя: катушка и четыре пары нормально разомкнутых контактов – три силовых (рабочих) и один вспомогательный. От катушки через все контакты проходит пунктирная линия, которая указывает, что все четыре контакта замыкаются и размыкаются одновременно.
Напряжение питания 220В подается на катушку через контакты, обозначенные как А1 и А2.
Современные магнитные пускатели выпускают с двумя однотипными контактами от одного вывода катушки.
Их выводят с противоположных сторон, маркируют одинаковым буквенным и цифровым значением, и соединяют между собой проволочной перемычкой. В нашем случае это выводы с маркировкой А2.
Все это сделано для удобства монтажа схемы. И если придется собирать схемы с участием магнитного пускателя, используйте оба эти контакта.
Теперь осталось рассмотреть контактную группу пускателя. Здесь все просто.
Силовыми контактами являются три пары: 1L1–2T1; 3L2–4T2; 5L3–6T3 — к ним подключается нагрузка, которую Вы хотите запитывать через магнитный пускатель или контактор.
Причем контакты 1L1; 3L2; 5L3 являются входящими – к ним подводится напряжение питания, а 2Т1; 4Т2; 6Т3 являются выходящими – к ним подключается нагрузка.
Хотя разницы здесь нет — что куда, но это считается за правило, чтобы можно было разобраться в монтаже другому человеку, не производившему монтаж.
Последняя пара контактов 13НО–14НО является вспомогательной и эту пару используют для реализации в схеме самоподхвата пускателя. То есть, эта пара нужна, чтобы при включении в работу, например, двигателя, все время его работы не пришлось держать нажатой кнопку «Пуск». О самоподхвате мы поговорим в следующей части.
Ну и последнее, на что хотел обратить Ваше внимание, это на то, что современные пускатели, автоматические выключатели и УЗО теперь можно размещать в одном ящике и на одну дин рейку. Так что учитывайте это при выборе ящика.
Теперь я думаю Вам понятно назначение, устройство и работа магнитного пускателя, а во второй части мы рассмотрим схемы подключения магнитного пускателя.
А пока досвидания.
Удачи!
Источник: https://sesaga.ru/naznachenie-ustrojstvo-i-rabota-magnitnogo-puskatelya.html
Схемы включения асинхронных двигателей — Toyota Tercel, 1.5 л., 1994 года на DRIVE2
Простые способы включения трехфазных двигателей в однофазную сеть
Всякий асинхронный трехфазный двигатель рассчитан на два номинальных напряжениятрехфазной сети 380 /220 — 220/127 и т. д. Наиболее часто встречаются двигатели 380/220В.Переключение двигателя с одного напряжения на другое производится подключением обмоток «назвезду» — для 380 В или на «треугольник» — на 220 В.
Если у двигателя имеется колодкаподключения, имеющая 6 выводов с установленными перемычками, следует обратить внимание вкаком порядке установлены перемычки. Если у двигателя отсутствует колодка и имеются 6 выводов— обычно они собраны в пучки по 3 вывода.
В одном пучке собраны начала обмоток, в другом концы
- (начала обмоток на схеме обозначены точкой).
В данном случае «начало» и «конец» — понятия условные, важно лишь чтобы направления намотоксовпадали, т. е. на примере «звезды» нулевой точкой могут быть как начала, так и концы обмоток, ав «треугольнике» — обмотки должны быть соединены последовательно, т. е. конец одной с началомследующей. Для правильного подключения на «треугольник» нужно определить выводы каждой
- обмотки, разложить их попарно и подключить по след. схеме:
Если развернуть эту схему, то будет видно, что катушки подключены «треугольником».Если у двигателя имеется только 3 вывода, следует разобрать двигатель: снять крышку состороны колодки и в обмотках найти соединение трёх обмоточных проводов (все остальныепровода соединены по 2). Соединение трёх проводов является нулевой точкой звезды.
Эти 3провода следует разорвать, припаять к ним выводные провода и объединить их в один пучок. Такимобразом мы имеем уже 6 проводов, которые нужно соединить по схеме треугольника. Если имеется6 выводов, но не объединены в пучки и не имеется возможности определить начала и концы.можно посмотреть здесь.
Трехфазный двигатель вполне успешно может работать и в однофазной сети, но ждать отнего чудес при работе с конденсаторами не приходится. Мощность в самом лучшем случае будет неболее 70% от номинала, пусковой момент сильно зависит от пусковой емкости, сложность подборарабочей емкости при изменяющейся нагрузке.
Трехфазный двигатель в однофазной сети этокомпромис, но во многих случаях это является единственным выходом.Существуют формулы для рассчета емкости рабочего конденсатора, но я считаю их некорректными по следующим причинам:1.
Рассчет производится на номинальную мощность, а двигатель редко работает в такомрежиме и при недогрузке двигатель будет греться из-за лишней емкости рабочего конденсатора икак следствие увеличенного тока в обмотке.2. Номинальная емкость конденсатора указаная на его корпусе отличается от фактической +/- 20%, что тоже указано не конденсаторе.
А если измерять емкость отдельного конденсатора, онаможет быть в два раза большей или на половину меньшей. Поэтому я предлагаю подбирать емкостьк конкретному двигателю и под конкретную нагрузку, измеряя ток в каждой точке треугольника,стараясь максимально выравнять подбором емкости. Поскольку однофазная сеть имеетнапряжение 220 В, то двигатель следует подключать по схеме «треугольник». Для запуска
- ненагруженного двигателя можно обойтись только рабочим конденсатором.
Направление вращения двигателя зависит от подключения конденсатора (точка а) к точке били в.Практически ориентировочную ёмкость конденсатора можно определить по сл. формуле: Cмкф = P Вт /10, где C – ёмкость конденсатора в микрофарадах, P – номинальная мощностьдвигателя в ваттах.
Для начала достаточно, а точная подгонка должна производиться посленагрузки двигателя конкретной работой. Рабочее напряжение конденсатора должно быть вышенапряжения сети, но практика показывает, что успешно работают старые советские бумажныеконденсаторы рассчитаные на 160В. А их найти значительно легче, даже в мусоре.
У меня мотор на сверлилке работает с такими конденсаторами, расположеными для защитыот хлопка в заземленной коробке от пускателя не помню сколько лет и пока все цело. Но к такомуподходу я не призываю, просто информация для размышления.
Кроме того, если включить 160иВольтовые конденсаторы последовательно, вдвое потеряем в емкости зато рабочее напряжениеувеличится вдвое 320В и из пар таких конденсаторов можно собрать батарею нужной емкости.Включение двигателей с оборотами выше 1500 об/мин, либо нагруженных в момент пуска,затруднено.
В таких случаях следует применить пусковой конденсатор, ёмкость которого зависит отнагрузки двигателя, подбирается экспериментально и ориентировочно может быть от равнойрабочему конденсатору до в 1,5 – 2 раза большей. В дальнейшем, для понятности, все чтоотносится к работе будет зеленого цвета, все что относится к пуску будет красного, что к
- торможению синего.
Включать пусковой конденсатор в простейшем случае можно при помощи нефиксированнойкнопки.Для автоматизации пуска двигателя можно применить реле тока. Для двигателеймощностью до 500 Вт подойдёт реле тока от стиральной машины или холодильника с небольшойпеределкой. Т. к.
конденсатор остаётся заряженным и в момент повторного запуска двигателя,между контактами возникает довольно сильная дуга и серебряные контакты свариваются, неотключая пусковой конденсатор после пуска двигателя.
Чтобы этого не происходило, следуетконтактную пластинку пускового реле изготовить из графитовой или угольной щётки (но не из медно-графитовой, т. к. она тоже залипает). Также необходимо отключить тепловую защиту этого реле,если мощность двигателя превышает номинальную мощность реле.
Если мощность двигателя выше 500 Вт, до 1,1кВт можно перемотать обмотку пускового релеболее толстым проводом и с меньшим количеством витков с таким расчётом, чтобы релеотключалось сразу же при выходе двигателя на номинальные обороты.
Для более мощного двигателя можно изготовить самодельное реле тока, увеличив размерыоригинального.Большинство трехфазных двигателей мощностью до трех кВт хорошо работают и воднофазной сети за исключением двигателей с двойной беличьей клеткой, из наших это серия МА,
- с ними лучше не связываться, в однофазной сети они не работают.
- Практические схемы включения
Обобщающая схема включения
С1- пусковой, С2- рабочий, К1- нефиксирующаяся кнопка, диод и резистор- система торможения
Работает схема следующим образом: при переводе переключателя в положение 3 инажатии на кнопку К1 происходит пуск двигателя, после отпускания кнопки остается только рабочийконденсатор и двигатель работает на полезную нагрузку.
При переводе переключателя в положение1, на обмотку двигателя подается постоянный ток и двигатель тормозится, после остановкинеобходимо перевести переключатель в положениие 2, иначе двигатель сгорит, поэтомупереключатель должен быть специальным и фиксироваться только в положении 3 и 2, а положение1 должно быть включено только при удержании.
При мощности двигателя до 300Вт инеобходимости быстрого торможения, гасяший резистор можно не применять, при большеймощности сопротивление резистора подбирается по желаемому времени торможения, но не должно
- быть меньше сопротивления обмотки двигателя.
Эта схема похожа на первую, но торможение здесь происходит за счет энергии запасенной вэлектролитическом конденсаторе С1 и время торможения будет зависить от его емкости. Как и влюбой схеме пусковую кнопку можно заменить на реле тока.
При включении переключателя в сетьдвигатель запускается и происходит заряд конденсатора С1 через VD1 и R1. Сопротивление R1подбирается в зависимости от мощности диода, емкости конденсатора и времени работы двигателядо начала торможения.
Если время работы двигателя между пуском и торможением превышает 1минуту, можно использовать диод КД226Г и резистор 7кОм не менее 4Вт. рабочее напряжениеконденсатора не менее 350В Для быстрого торможения хорошо подходит конденсатор отфотовспышки, фотовспышек много, а нужды в них больше нет.
При выключении переключательпереходит в положение замыкающее конденсатор на обмотку двигателя и происходит торможениепостоянным током. Используется обычный переключатель на два положения.
Схема реверсивного включения и торможенияЭта схема развитие предыдущей, здесь автоматически происходит запуск при помощитокового реле и торможение электролитическим конденсатором, а также реверсивное включение.Отличие этой схемы: сдвоеный трехпозиционный переключатель и пусковое реле. Выкидывая изэтой схемы лишние элементы, каждый из которых имеет свой цвет, можно собрать схему нужнуюдля конкретных целей. При желании можно перейти на кнопочное включение, для этого понадобятся один или два автоматических пускателя с катушкой на 220В Используется сдвоеный
- переключатель на три положения.
Еще одна не совсем обычная схема автоматического включения.Как и в других схемах здесь есть система торможения, но ее при ненадобности легковыкинуть.
В этой схеме включения две обмотки соединены паралельно, а третья через системупуска и вспомогательный конденсатор, емкость которого примерно в два раза меньше необходимогопри включении треугольником.
Для изменения направления вращения нужно поменять местаминачало и конец вспомогательной обмотки, обозначеной красной и зеленой точками.
Запускпроисходит за счет зарядки конденсатора С3 и продолжительность запуска зависит от емкостиконденсатора, а емкость должна быть достаточно велика, чтобы двигатель успел выйти наноминальные обороты.
Емкость можно брать с запасом, так как после заряда конденсатор неоказывает заметного действия на работу двигателя. Резистор R2 нужен для разрядки конденсатораи тем самым подготовки его для следующего пуска, подойдет 30 кОм 2Вт. Диоды Д245 — 248подойдут любому двигателю. Для двигателей меньшей мощности соответственно уменьшится имощность диодов, и емкость конденсатора. Хоть и затруднительно сделать реверсивное включениепо данной схеме, но при желании и это можно. Потребуется сложный переключатель или пусковые
- автоматы.
- Использование электролитических конденсаторов в качестве пусковых и рабочих
Стоимость неполярных конденсаторов достаточно высока, да и не везде их можно найти.Поэтому, если их нет, можно применить электролитические конденсаторы, включенные по схеме ненамного сложнее. Емкость их достаточно велика при небольшом объеме, они не дефицитны и недороги. Но нужно учесть вновь возникшие факторы.
Рабочее напряжение должно быть не менее350 Вольт, включаться они могут только парами, как указано на схеме черным цветом, а в такомслучае емкость уменьшается вдвое. И если двигателю для работы нужно 100 мкФ, то конденсаторыС1 и С2 должны быть по 200мкФ.
У электролитических конденсаторов большой допуск по емкости, поэтому лучше собратьбатарею конденсаторов (обозначена зеленым цветом), легче будет подбирать фактическую емкостьнужную двигателю и кроме того у электролитов очень тонкие выводы, а ток при большой емкостиможет достигать значительных величин и выводы могут греться, а при внутреннем обрыве вызватьвзрыв конденсатора.
Поэтому вся батарея конденсаторов должна находиться в закрытой коробке,особенно во время экспериментов. Диоды должны быть с запасом по напряжению и по току,необходимому для работы. До 2кВт вполне подойдут Д 245 — 248. При пробое диода сгорает (взрывается) конденсатор.
Взрыв конечно сказано громко, пластмассовая коробка вполне защитит отразлета деталей конденсатора и от блестящего серпантина тоже. Ну вот, страшилки рассказаны,теперь немного о конструкции.
Как видно из схемы, минусы всех конденсаторов соединены вместе и, стало быть,конденсаторы старой конструкции с минусом на корпусе можно просто плотно перемотатьизолентой и поместить в пластмассовую коробку соответствующих размеров. Диоды нужнорасположить на изоляционной пластинке и при большой мощности поставить их на небольшиерадиаторы, а если мощность не велика и диоды не греются, то их можно поместить в ту же коробку.Включенные по такой схеме электролитические конденсаторы, вполне успешно работают как
- пусковыми так и рабочими.
Включение пускового конденсатора при помощи реле тока.
Из теории известно, что пусковой ток в несколько раз превышает номинальный ток рабочегодвигателя, поэтому включение пускового конденсатора при включении трехфазного двигателя воднофазную сеть, можно осуществить автоматически, — при помощи реле тока.
Для двигателей до 0,5 кВт подойдёт пусковое реле от холодильника, стиральной машинытипа РП-1, с небольшой переделкой. Подвижные контакты надо заменить на графитовую илиугольную пластинку, выточенную из щётки коллекторного двигателя, по размерам оригинала. Т. к.
при повторном включении, ток заряженного конденсатора даёт большую искру на контактах, истандартные контакты свариваются между собой. При применении графита, такого явления ненаблюдалось. (Кроме того, следует отключить термореле).
Для двигателей до 1 кВт можно перемотать РП-1 проводом Ф1,2мм до заполнения катушки
- 40-45 витков.
Для более мощных двигателей следует изготовить реле тока по аналогии с РП-1, большегоразмера.Моточный провод реле должен соответствовать номинальному току двигателя, из расчёта5А / 1мм?Количество витков следует подобрать экспериментально, для чёткого включения реле призапуске и отключения после запуска. Лучше намотать больше витков и отматывать до достижения
- четкого отключения после пуска.
Изменение оборотов трёхфазного асинхронного двигателя (380/220) включённого воднофазную сетьЧтобы не применять дорогой и сложный коллекторный двигатель в механизмах требующихизменения оборотов двигателя, можно обойтись асинхронным трёхфазным двигателем, введя вфазовый провод реостат или простейший регулятор мощности.
Переделка двигателя заключается в изменении якоря двигателя.По образцу якоря, установленного в двигателе изготавливается «массивный якорь» измагнитомягкой малоуглеродистой стали или из серого чугуна (СЧ). (Чугунный работает лучше.) Изстарого якоря можно выпрессовать вал и насадить на него массивный якорь.
1- медные стержни из проволоки Ф2-2,5мм запрессованы в чуть меньшие отверстияили на клею провода к ним просто припаяны 2-диск из графитовой щетки Ф на 1,5мм меньше Фкорпуса, толщина 1,5-2мм 3- корпус 4- обмотка 5- якорекКорпус реле можно изготовить из текстолита, гетинакса, эбонита и т. п.
Стержень —алюминиевая проволока, магнитный якорь — цилиндр из малоуглеродистой стали выточен в форместакана.Чтобы понятнее была конструкция самодельного реле, можно разобрать реле РП-1 иизготовить аналог, пропорционально увеличив детали. Примерный размер корпуса Ф30мм h 60мм.
Якорек и контактный диск должны свободно перемещаться по стержню. Пружина не должна быть
- слишком сильной.
- Включение и реверсирование трёхфазного асинхронного двигателя (380/220) воднофазную сеть одним переключателем
Множество представленных в Интернете схем реверсирования необоснованно усложнены иимеют неоправданно большое количество переключателей.Предлагается простая схема включения и реверсирования одним переключателем.
Подойдёт практически любой переключатель имеющий 3 фиксированных положения,соответствующий мощности двигателя.При необходимости – данная схема облегчает автоматизацию включения – выключения иреверсирования двигателя.
При необходимости пускового конденсатора (включение нагруженного или
- высокооборотистого двигателя), его можно подключать при помощи пусковой кнопки или реле тока.
- Изменение оборотов трёхфазного асинхронного двигателя (380/220) включённого воднофазную сетьЧтобы не применять дорогой и сложный коллекторный двигатель в механизмах требующихизменения оборотов двигателя, можно обойтись асинхронным трёхфазным двигателем, введя в
- фазовый провод реостат или простейший регулятор мощности.
По образцу якоря, установленного в двигателе изготавливается «массивный якорь» измагнитомягкой малоуглеродистой стали или из серого чугуна (СЧ). (Чугунный работает лучше.) Из
старого якоря можно выпрессовать вал и насадить на него массивный якорь.
Взято с Электронный журнал “Я электрик!” Выпуск #15 (февраль 2009 г.)
Я собираюсь использовать схему с использованием реле тока, для отключения пускового конденсатора.
Источник: https://www.drive2.ru/l/9663169/
Контакторы и магнитные пускатели: сходства, различия
Контакторы и магнитные пускатели — электротехнические приспособления, являющиеся немаловажными составляющими электрических сетей. Они предназначаются для связи между цепями силового типа и для цепей управления.
Зачастую, специалисты по наладке оборудования, не всегда могут дать обоснованный ответ, чем отличается контактор от магнитного пускателя.
Оба выполняют перечень схожих назначений, но все же различия между ними существуют, так как, каждый из них, обладает своеобразными функциями и особенностями.
Контакторы
Контактор — двухпозиционное устройство электромагнитного принципа, выполняющее дистанционное воздействие на включение и выключение электрических силовых цепей, в условиях обычного режима работы.
Принцип работы
Контакторы состоят из проводных катушек, в которых расположены сердечники, присоединенные к контактам замыкания (размыкания). Контакты замыкают (размыкают) цепь, которая пропускает ток. Медный (стальной) каркас упрочняет катушку и создает условия для охлаждения элементов.
Принцип работы контакторов заложен в двух действиях противоположного характера.
На катушку поступает напряжение, вследствие чего, создается магнитный импульс, и подвижная часть сердечника начинает движение в сторону неподвижной части, и замыкает цепь, благодаря чему, в цепи появляется ток и включается электрооборудование.
Когда подача энергии прекращается, сердечник, при помощи пружинной системы, возвращается в разомкнутое положение, что приводит к размыканию цепи и отключению оборудования.
Включаются и выключаются контакторы благодаря двум кнопкам «Пуск» и «Стоп» на панели кнопочного устройства. Замыкание контактов кнопки «Пуск» запускает процесс, описанный чуть выше, который приводит к замыканию силовых контактов и те остаются в замкнутом положении, даже после возврата кнопки в исходное положение. Такой эффект достигается, благодаря наличию, вспомогательных блок-контактов.
Системные цепи, имеют принципиальные отличия. Питание, поступающее на катушку, приходит с цепи управление, где ток не превышает 230 В. А цепь, которую замыкают контакты, называется силовой, так как она проводит ток, с силой, превышающей силу тока в цепи управления.
Область применения
Данные устройства, коммутируют цепи реактивной мощности и применяются в управлении электрическими двигателями, имеющими высокую мощность, а так же, в области инфраструктуры электрического транспорта.
Магнитные пускатели
Магнитный пускатель — низковольтный аппарат комбинированного типа и электромагнитного принципа, который производит запуск электродвигателей, обеспечивает их непрерывное вращение, отключает от электропитания, защищает, выполняет реверсивные функции.
Принцип работы
Данный прибор, состоит из основной части, для стационарного крепления, катушки, якоря, который передвигается по направляющим механизма, пружинного механизма, стационарных и подвижных контактов и корпуса. Самые простые пускатели, предстают в виде коробки, оборудованной кнопкой и клеммами, для присоединения к силовым цепям и стационарным контактам.
Принцип действия, заключается в том, что, когда ток попадает на катушку пускателя, он срабатывает по принципу электромагнита.
Под воздействием магнитного поля, якорь притягивается к сердечнику, вследствие чего происходит замыкание контактного мостика, и запускается электрооборудование. Нижнее положение якоря, влияет на работу всего прибора.
В данном положении, должно быть надежное сцепление контактов, так как данная составляющая играет роль прочного соединения входных и выходных электрических проводов, в момент срабатывания схемы.
Отсутствие тока, влечет за собой, исчезновение магнитного поля вокруг катушки. Это приводит к отбрасыванию якоря вверх за счет энергии пружин, контактный мостик, находящийся на подвижной части, обеспечивает разрыв силовой цепи, что приводит к отключению питания и оборудования. В данной системе, тоже есть наличие, вспомогательных блок-контактов.
Исправность магнитных пускателей, можно проверять вручную. Если устройство исправно, то, при нажатии на якорь, должно ощущаться сопротивление от сжатия пружин. Такое ручное управление допустимо только для проверок и не применяется во время рабочего процесса.
Область применения
Основная сфера использования магнитных пускателей — запуск, остановка и реверс электрических двигателей асинхронного типа. А, так как эти устройства достаточно неприхотливы и защищены от воздействия окружающей среды, то их устанавливают для дистанционного управления осветительным оборудованием, компрессорными установками, насосами, кранами, электропечами, конвейерами, кондиционерами.
Отличия контакторов от магнитных пускателей
Габариты, конструктивные особенности и защищенность
В состав контактора входит пара силовых контактов и объемные камеры для дугового гашения, что делает это устройство достаточно тяжелым и большим.
По этим причинам, он не оборудуется корпусом, что делает его опасным для посторонних лиц и незащищенным от влаги.
Поэтому, они монтируются в специальных местах, коими являются специализированные щиты или электрические шкафы. Имеют от 1 до 5 полюсов.
Магнитный пускатель, в отличие от контактора, имеет пластиковый корпус и трех — парные силовые провода, не имеет камер для дугового гашения. Корпус делает его безопасным и защищенным от влаги и позволяет использовать пускатели, даже под открытым небом, но отсутствие камер защиты от дуговых зарядов, не позволяет его использование в цепях с высокими мощностями и множественными коммутациями.
Производственный фактор
Важно знать, что слаботочные контакторы не выпускаются, а значит в слаботочных цепях, возможно, устанавливать только магнитные пускатели. Именно это обстоятельство, позволяет пускателям держаться на плаву в рыночном сегменте данной сферы.
Назначение устройств
Несмотря на то, что пускатели отлично подходят для большинства электрических приборов, основным его назначением, являются трехфазные двигатели переменного тока. Пускатель выполняет функцию их запуска и отключения, а также предотвращает непроизвольный пуск. В принципе, пускатель обладает достаточно узконаправленной значимостью. Используются в сетях с напряжением до 380 В.
Контактор, в свою очередь, коммутирует, абсолютно все виды электрических цепей и применяется в конструкции сложносоставных схем, что делает его, практически универсальным.
Мощные электродвигатели, цепи компенсации реактивной мощности и иные области электротехники, где присутствуют частые запуски и большие нагрузки, вот основные сферы применения контакторов.
Используются в сетях с напряжением до 660 В.
Необходимые действия при эксплуатации контакторов и магнитных пускателей
- Перед установкой приборов, необходимо убрать смазку с рабочих поверхностей и проверить состояние, каждого электрического соединения и проверить, правильность регулировки устройств.
- Необходимо регулярно проверять состояние контактной группы, периодически осматривая после 50 000 срабатываний или после каждого отключения тока в аварийном режиме.
- Выполняя зачистку поверхности контактов, главное сохранять их первоначальную форму.
- Проверять расположение разрывных контактов, относительно друг друга. В помощь будет копировальная бумага.
- У контакторов, с несколькими полюсами, проверяется одновременное замыкание контактов всех полюсов.
- Необходимо проводить проверку на исправность механической блокировки.
- Постоянно проверять зазор между контактами. Заменяются они, когда первоначальная толщина уменьшается на 50%, а у контактов с накладками на 80%.
Заново установленные контакты, должны соприкасаться по линии, длина которой по сумме, ровняется 75% и более, ширине подвижного контакта. Допускается контактное смещение, не более 1 мм по ширине.
Основные поломки контакторов и магнитных пускателей, и их причины
Выход из строя управляющей катушки
Причины:
- было подано напряжение, от электрической сети, не соответствующее рекомендациям. То есть, была установлена катушка под напряжение 220 вольт, а напряжение подсоединяемой сети, составляло 380 вольт;
- подача тока на катушку, у контактов которой, образовалась перемычка. Итог — короткое замыкание и сгоревшие контакты катушки;
- межвитковое замыкание, вследствие естественного старения изоляции на медной обмотке катушки;
- превышенные рабочие температуры.
Сгорание главных контактов
Причины:
- неправильный расчёт параметров нагрузки на пускатель.
- подключение устройства, с двумя силовыми и одним дополнительным контактом, к трёхфазной нагрузке. Дополнительный контакт не рассчитан на номинальную силу тока выше 10 А, вследствие чего, происходит сгорание более слабого звена;
- низкое напряжение на катушке, вследствие чего, возникает недостаток мощности вырабатываемой силы, необходимой для сцепления главных контактов. Причина такого недостатка, кроется в разной жесткости возвратных пружин, когда возникает дребезг и уменьшается постоянство и площадь сцепления контактов.
- в процессе длительного срока работы, по причине воздействия, создаваемого вибрацией, ослабевает крепление проводников с контактными выводами. Уменьшение площади смыкания контактов, влечет за собой местный перегрев, что выводит контакты из строя.
Видео по теме
Источник: https://ProFazu.ru/elektrooborudovanie/puskateli-rele/kontaktory-i-magnitnye-puskateli.html
Как рассчитать мощность пускателя?
Магнитный пускатель обеспечивает пуск, остановку, принудительное торможение противотоком, реверс (запуск в обратную сторону) и защиту от перегрузок трёхфазных электродвигателей, имеющих пусковой ток в несколько раз больший, чем номинальный рабочий ток.
Магнитный пускатель серии ПМ 12
Конструктивно он состроит из комбинации всех элементов и коммутационных аппаратов, необходимых для нормальной эксплуатации электродвигательных установок. Коммутационными аппаратами называют устройства для коммутации (включения – отключения) тока в электрических цепях.
К ним относятся реле, контакторы, предохранители, автоматические выключатели, разъединители, рубильники, кнопочные посты. Соединённые по определённой схеме контактор, тепловое реле и кнопки управления составляют единое устройство – электромагнитный пускатель. Он обеспечивает функционирование и защиту электродвигателей в различных режимах работы.
Обозначение магнитного пускателя , теплового реле, контакторов на схеме
Принцип коммутации
Замыкание контактов силовой цепи осуществляется контактором – аппаратом, в котором сцеплённая с якорем электромагнитного реле группа контактных пластин замыкается на неподвижные контакты, соединённые с входными и выходными клеммами подключения питающего напряжения сети и линий нагрузки.
Таким образом, с помощью малых токов в катушке электромагнитного реле и слаботочных сигналов управления удаётся коммутировать сильноточные цепи больших нагрузок.
Небольшой ток и малое напряжение сигнальной цепи делает работу оператора намного безопаснее, а для автоматических систем контроля и управления даёт широкий простор их применения, благодаря внедрению в процесс компьютеризированных алгоритмов.
Параметры пусковых устройств
Для разнообразного предназначения выпускаются такие серии магнитных пускателей: ПА, ПМ, ПМА, ПМЕ, ПМЛ. Исходя из параметров нагрузки, выбор и применение данных устройств происходит по соответствию.
Магнитный пускатель серии ПМЛ
1.Величине электромагнитного пускателя – условный термин, характеризирующий допустимые продолжительные токи контактов главной силовой цепи. На данный момент имеются такие числовые обозначения величин и соответствующие им номинальные токи при напряжении 380В в рабочем режиме АС-3:
- «0» — 6,3 А;
- «1» – 10 А;
- «2» — 25 А;
- «3» — 40 А;
- «4» — 63 А;
- «5» — 100 А;
- «6» — 160 А;
- «7» — 250 А.
2.Режиму работы пускового устройства, определяющему характер коммутируемой нагрузки:
- АС-1, нагрузка только активная, или мало индуктивная;
- АС-3, запуск электродвигателя и его отключение при вращении;
- АС-4, тяжёлый запуск двигателя, отключение его на низких оборотах и при неподвижном роторе, торможение противотоком.
Величины магнитного пускателя и категории их применения
3.Рабочему (коммутационному) напряжению катушки реле, которое бывает таких значений:
- Переменное: 24; 36; 42; 110; 220; 380 В.
- Постоянное: 24В.
4.Количеству дополнительных контактов, имеющих такое обозначение латинскими буквами и кириллицей:
- Нормально разомкнутые (NO), (НО);
- Нормально замкнутые (NC), (НЗ).
- Также существуют специальные, защёлкивающиеся на корпус пускателя приставки, дополнительно добавляющие несколько сигнальных контактов.
- Магнитный пускатель серии ПМЛ с защелкивающейся приставкой
- 5.Степени защиты прибора:
- IP00 — открытые, устанавливаются в обогреваемых помещениях в закрытых электрощитах защищённых от попадания посторонних предметов, воды и пыли;
- IP40 – изготовляются в корпусе, применяются внутри не обогреваемых помещений, где имеется малое количество пыли в воздухе и исключено попадание воды на прибор;
- IP54 – выпускаются в корпусе, применение внутреннее и наружное в местах, защищённых от воздействия атмосферных осадков и прямой солнечной радиации.
6.Наличию теплового реле, обеспечивающего защиту подключённых цепей от продолжительных перегрузок.
7. Наличию реверса, конструктивно исполненного путём объединения в одном корпусе двух электромагнитных реле, имеющих по три контактных группы, с механической или электрической блокировкой одновременного их включения.
8.Классу износостойкости, означающему возможное количество надёжных коммутаций.
9.Дополнительным элементам управления.
Необходимое соответствие параметров
Поскольку правильный выбор электромагнитного пускателя является залогом успешной и бесперебойной работы подключаемых электроустановок, необходимо соответствие вышеописанным параметрам характеристик коммутируемой цепи, напряжения управления, схемы включения, типа окружающей среды. Важнейшим правилом является требование, чтобы ток нагрузки не превышал допустимого тока контактов.
- Для подключения активной нагрузки (без двигателей) определённой мощности Р, силу протекающего тока I определяют из упрощённой формулы:
- I=P/(√3*U) (А),
- где U – напряжение сети, 380 (В), .
- Соответственно полученному значению выбирают пусковое устройство с номинальным током не меньше расчётного ниже по таблице.
- Таблица выбора магнитного пускателя
Народный способ выбора
Для подключения асинхронных электродвигателей с короткозамкнутым ротором также существует «народная» формула, согласно которой номинальный ток Iном двигателя принимается равным удвоенному значению мощности в киловаттах, то есть, если
Р=3,7кВт, то Iном= 3,7*2 =7,4А.
Исходя из этого значения делают выбор контактора магнитного пускателя, чтобы его номинальный рабочий ток был не меньше данного значения.
В таких расчётах подразумевается, что контакторы с подходящим номинальным значением нагрузки способны выдерживать запуск электродвигателей, имеющих многократное превышение пусковых токов Iп над рабочим номинальным Iном, поэтому расчёт пусковых токов не производится. Для данного подключения подходит пускатель с номинальным током 10 А.
Расчёт по параметрам двигателя
- Для более точного выбора пускового устройства, расчёт начинают с изучения паспорта подключаемого электроприбора и применяют такие формулы, исходя из потребляемой мощности:
- Iном=P/ (U*η* cosφ*√3),
- где P- мощность нагрузки (Вт), cosφ – коэффициент мощности, а η – коэффициент полезного действия электродвигателя (%), U-напряжение сети 380 (В), √3-3-х фазное напряжение.
- Iпуск = k* Iном,
- где k – кратность пускового тока.
- Ударный пусковой ток — это полный ток короткого замыкания , который состоит из трех составляющих и определяется по формуле :
- i= (1,2-1,4)*Iп*√2
Допустим, двигатель имеет: мощность 3,7 кВт = 3700 Вт; η = 87% =0,87; cosφ = 0,88; k = 7,5.
- Рассчитываем:
- Iном=3700/(380*0,87*0,88*√3) = 7,34 А.
- Определяем стартовые нагрузки:
- Iпуск = 7,5*7,34 = 55,05 А.
Нужно учитывать, что в паспорте указывается номинальный ток In магнитного пускателя. В режиме работы АС-3 данный прибор обеспечивает запуск при шестикратном превышении его номинального тока. Imax=6* In.
- Проверяем, подходит ли пусковое устройство с In = 10А, выбранное по народному методу, где максимальный ток контактора должен быть больше пускового тока электродвигателя Imax> Iпуск.
- Imax = 6*10 = 60А > 55,05 А = Iпуск.
- Также определяем ударный пусковой ток (амплитудное значение):
- i= 1,3*55,05*√2=101,2 А.
- Как видим, условие выбора соблюдается, народный метод себя оправдал.
Также подбор по мощности можно осуществлять по таблицам(см. выше) из справочников, где указано значение её значение в киловаттах и соответствующий ему номинал контактора.
В следующих статьях рассмотрим как правильно необходимо подключать магнитный пускатель к двигателю с реверсом и без него.
Источник: http://infoelectrik.ru/vybor-kommutacionnoj-apparatury-dlya-montazha/magnitnyj-puskatel-dlya-chego-on-nuzhen.html
Пускатель и контактор. Выбор и характеристики — блог СамЭлектрик.ру
Пускатель ПМЛ-1220 0*2Б с кнопками в корпусе
Пускатели применяют для подключения мощной нагрузки – электродвигателей, ТЭНов, мощных ламп, и др. Область применения – там, где реле уже не справляются, а полупроводниковые силовые элементы либо малы по току, либо дороги.
Контакторы (пускатели) электромагнитные
Следует внести немного порядка в терминологию. Часто путают пускатели и контакторы. Для некоторых это одно и то же, а некоторые говорят, что контактор – это просто большой мощный пускатель. Но насколько мощный – никто толком объяснить не может…
Раньше, во времена СССР, так оно и было. Теперь пускатели, которые выпускались или разрабатывались в те времена, так и называют пускателями (например, ПМЛ, который выпускается до сих пор на Украине), а новые и зарубежные модели называют контакторами.
Одни и те же устройства электрики называют пускателями, а продавцы – контакторами. Честно говоря, и мне привычней говорить именно пускатели.
Чем отличается контактор от пускателя?
На самом деле контактор – это устройство, состоящее только из электромагнитной катушки и контактов. При подаче напряжения на катушку контакты замыкаются (или размыкаются). Контактор не содержит приспособлений для защиты, фиксации, коммутации, индикации, и др.
Как рассчитать мощность трансформатора по нагрузке?
Пускатель – это устройство, содержащее в себе контактор как главный составляющий элемент. Кроме того, пускатель как правило содержит тепловое реле для защиты от перегрузки по току, кнопки ПУСК и СТОП, индикацию, может быть заключен в корпус, иметь автоматический выключатель для защиты от КЗ.
Иначе говоря, пускатель служит для пуска (включения) различных потребителей электроэнергии.
Подробно о том, как трехфазный электродвигатель подключается к пускателю, различные схемы включения электродвигателя приведены в моей статье про подключение асинхронных двигателей. А ещё пример применения пускателей – в статье про схему гидравлического пресса. Различные схемы включения магнитных пускателей подробно рассмотрены здесь.
А если Вам вообще интересно то, о чем я пишу, подписывайтесь на получение новых статей и вступайте в группу в ВК!
Пускатель может содержать два контактора. Это бывает в случаях, когда применяется реверсивное управление двигателем, либо при плавном пуске, когда мощный двигатель включают сначала по схеме “звезда”, а затем – по “треугольнику”.
Хотя, такую схему нельзя назвать “плавной”, для плавного пуска существуют специальные устройства. Читайте мои статьи про Мягкий пускатель и про Реальную схему включения устройства плавного пуска.
Разобранный пускатель ПМЛ-1220 0*2Б. Видно контактор и тепловое реле.
Реле от контактора отличаются лишь конструкцией и назначением, и разница иногда между ними слабо различима.
Как правило,
- Реле не имеет дугогасительных камер.
- Реле заключено в герметичный корпус.
- Реле рассчитано на слабый ток и чисто активную нагрузку.
- Реле имеет переключающие контакты, а значит нормально разомкнутые и замкнутые.
- Реле не рассчитано на подключение реактивной трехфазной нагрузки.
- Реле может иметь от 1 до 6 равнозначных контактов, а контактор обязательно имеет 3 силовых и (как опция) 1-2 слаботочных контакта.
- Реле не имеет дополнительных функций и контактов, а контактор может быть дополнен приставками различной установки и назначения.
- Реле устанавливается на панель, и легко может быть заменено лишь с помощью рук. Для того, чтобы заменить контактор, нужно обесточивать оборудование и использовать отвертку.
Характеристики и виды пускателей по характеристикам
Перед тем, как выбрать контактор, нужно определиться с нагрузкой, и выбор делать исходя прежде всего мощности нагрузки. Параметры контакторов можно уточнить на сайтах производителей или у торгующих организаций, а здесь мы приведем и рассмотрим самые важные. Основные параметры (ток, мощность нагрузки) обычно указывают на корпусе пускателя.
Величина (условный габарит) пускателя (контактора)
Самый главный параметр, величина характеризует условно мощность и габариты пускателя. Существуют такие величины пускателей:
- нулевая величина – на максимальный ток до 6 А (через каждый рабочий контакт)
- первая – на максимальный ток до 9 – 18 А (в зависимости от исполнения контактов)
- пускатель 2 величины – до 25 – 32 А
- пускатель 3 величины – до 40 – 50 А
- пускатель 4 величины – до 65 – 95 А
- пускатель 5 величины – до 100 – 160 А
- шестая величина – от 160 А и выше
Имеется ввиду ток по категории применения АС-3 (для индуктивной нагрузки), для категории АС-1 (резистивная или малоиндуктивная нагрузка – например, ТЭНы) максимальный ток для того же пускателя будет в полтора – два раза выше. От величины пускателя зависит, какую мощность он может коммутировать (трехфазная цепь 380 В, индуктивная нагрузка).
- 1 – до 2,2 – 7,5 кВт
- 2 – до 11 – 15 кВт
- 3 – до 18 – 22 кВт
- 4 – до 30 – 45 кВт
Сразу надо сказать, что эта мощность – действительно максимальная, реально надо смотреть на величину тока конкретного пускателя (как правило, вторая и третья цифра в названии).
Величина пускателя указывается в названии первой цифрой.
При превышении тока или токе, близком к максимальному, количество срабатываний (надежность) резко уменьшается, поэтому пускатель надо выбирать с запасом по мощности.
Количество контактов (полюсов)
В основном выпускаются контакторы с тремя рабочими контактами (для коммутации) и одним дополнительным.
Дополнительный, или блокировочный контакт нужен для блокировки, или “самопитания”, чтобы зафиксировать контактор во включенном состоянии при использовании стандартной схемы включения.
Дополнительные контакты бывают нормально разомкнутые (чаще всего используются) и нормально замкнутые.
Для увеличения количества дополнительных контактов используют контактные приставки, применение которых существенно расширяет круг схемотехнических решений. В СССР такие дополнительные приставки назывались ПКИ, сейчас в продаже есть и другие модели, но суть одна.
Дополнительные контактные приставки ПКИ, и др.
Максимальный ток дополнительных контактов, как правило, равен (в пускателях первой и второй величин) или меньше максимального тока основных контактов. Существуют также дополнительные контакты (приставки) выдержки времени ПВЛ, в которых контакты включаются или выключаются через время задержки. Подробнее – в статье про пневматические реле выдержки времени.
А что там свежего в группе вк самэлектрик.ру?
Электромагнитные катушки контакторов, как правило, выпускаются на следующие напряжения: 24, 36, 110, 230, 380 Вольт. В пускателях большой величины используются катушки бОльшей мощности. Катушки продаются и отдельно, и её можно легко заменить в контакторе, если нужна другая величина напряжения.
Катушки контакторов
Как правило, при наличии нулевого проводника целесообразно применять катушки контактора на напряжение 220 В, а при его отсутствии (чисто трехфазные потребители) – катушки на 380 В.
Виды пускателей по назначению
Теперь приведу пару примеров пускателей – реальных схем.
Пускатель звезда-треугольник
Эта схема пускателя собрана на трех контакторах второй величины и служит для подключения электродвигателя по схеме “звезда-треугольник”. Вверху слева подается три фазы, внизу – три фазы уходит на питания двигателя. Красные провода – питание катушек контакторов и проверка работы. Защита (мотор-автомат) не показана.
реверсивный пускатель с мотор-автоматом
Здесь – пускатель реверсивный, на двух взаимно блокированных контакторах. Мотор-автомат защиты двигателя – справа.
Бонус
В заключение – несколько фотографий контакторов, верой и правдой отслуживших свой век.
Пускатель 2 величины. Совнархоз Латвийской ССР, 1964 г.
- пускатель ПМЕ 211
- Пускатель ПМЛ, справа – его прототип Telemecanique
- Страшно смотреть, но именно такие пускатели применялись в СССР…
…и такие. Не правда ли, очень похоже на музейный экспонат?
Где можно купить сейчас контакторы? Конечно, в соседнем электро магазине. И главное. Не забудьте сообщить продавцу напряжение катушки!
Статья понравилась?Добавьте её в свою соц.сеть и дайте оценку!
(8 4,00
Источник: https://1000eletric.com/kak-rasschitat-moschnost-puskatelya/